Транспорт лекарственных веществ с кровью. Транспортные системы лекарственных веществ

Механизмы всасывания (механизмы транспорта лекарственных веществ) представлены на рис. 2.3.

Самый частый механизм транспорта лекарственных веществ – пассивная диффузия через мембраны клеток кишечной стенки (энтероцитов). Скорость всасывания в этом случае пропорциональна градиенту концентрации веществ и существенно зависит от их растворимости в мембране (наиболее легко путем пассивной диффузии всасываются липофильные неполярные вещества ).

Рис. 2.3.

А – диффузия; В – фильтрация; С – активный транспорт; D – пиноцитоз

Диффузии, как правило, подвергаются электролиты, находящиеся в недиссоциированном состоянии. Растворимость и степень ионизации лекарственного средства определяются pH содержимого желудка и кишечника. Необходимо подчеркнуть, что лекарственные средства путем пассивной диффузии хорошо всасываются и в прямой кишке, что служит основой для введения лекарственных средств ректальным путем. Виды пассивного транспорта представлены на рис. 2.4.

Рис. 2.4.

Вода, электролиты и малые гидрофильные молекулы (например, мочевина) транспортируются в кровь другим механизмом – фильтрацией через поры в эпителии кишечника. Фильтрация через поры имеет значение для всасывания лекарственных средств с молекулярной массой менее 100 Да и осуществляется по градиенту концентрации.

Использует специализированные механизмы клеточных мембран с затратой энергии для переноса определенных ионов или молекул против градиента концентрации. Он характеризуется избирательностью, насыщаемостью. При активном транспорте наблюдается конкуренция веществ за общий транспортный механизм (например, при усвоении некоторых витаминов и минеральных веществ). Степень всасывания зависит от дозы препарата, так как возможен феномен "насыщения белков-переносчиков". Особенности активного транспорта представлены на рис. 2.5.

Основной механизм всасывания ксенобиотиков (синтезированных лекарственных веществ) – пассивная диффузия. Для веществ природного происхождения, таких как аминокислоты, витамины, эссенциальные микроэлементы и др., в организме имеются специализированные активные транспортные механизмы. В этом случае основной путь усвоения – активный транспорт, а пассивная диффузия начинает играть роль только при очень высоких концентрациях.

Лекарственные вещества с большими молекулами или комплексы лекарственного вещества с крупной транспортной молекулой всасываются путем пиноцитоза . При этом происходит инвагинация мембраны клетки кишечного эпителия и образование пузырька (вакуоли), заполненного захваченной жидкостью вместе с лекарством. Вакуоль мигрирует по цитоплазме клетки к противоположной стороне и освобождает содержимое во внутреннюю среду организма. Однако пиноцитоз не имеет существенного значения для всасывания лекарственных средств и используется лишь

в редких случаях (например, при усвоении комплекса цианокобаламина с белком – внутренним фактором Кастла).

Рис. 2.5.

Современные технологии управляемого высвобождения в производстве лекарственных средств используют такие технологические приемы, как:

  • использование вспомогательных веществ;
  • гранулирование;
  • микрокапсулирование;
  • применение специального прессования;
  • покрытие оболочками и т.д.

С их помощью можно изменять время распада таблетки, скорость растворения или выделения лекарственного вещества, место выделения и длительность нахождения в определенной зоне желудочно-кишечного тракта (над окном всасывания). А это, в свою очередь, определяет скорость и полноту всасывания, динамику концентрации лекарственного вещества в крови, т.е. биодоступность препарата. Для некоторых препаратов создают таблетки из микрочастиц с адгезивными свойствами, которые "приклеиваются" к слизистой оболочке, или таблетки, разбухающие в желудке настолько, что они плавают на поверхности и (или) не могут пройти через пилорический сфинктер в кишечник. На скорость распада таблеток в желудке влияет способ их производства. Так, обычные (прессованные) таблетки прочнее тритурационных (формованных). Скорость распада зависит и от вспомогательных веществ, используемых для придания необходимых свойств таблетируемой смеси (сыпучесть, пластичность, прессуемость, содержание влаги и т.д.).

Кишечнорастворимые таблетки получают путем покрытия их желудочно-резистентной оболочкой или прессованием гранул или микрокапсул, предварительно покрытых такими оболочками. При необходимости оболочки могут обеспечивать и более длительную задержку растворения, чем на 1 ч, который таблетка проводит в желудке. Оболочка может быть достаточно толстой, например сахарной, которая иногда имеет бо́льшую массу, чем ядро таблетки, содержащее лекарственное вещество. Тонкие пленочные оболочки (менее 10% от массы таблетки) могут выполняться из целлюлозы, полиэтиленгликолей, желатина, гуммиарабика и т.д. Подбором оболочки и введением дополнительных веществ можно достичь замедления нарастания концентрации активного вещества в крови, что важно для снижения риска развития нежелательной реакции, и (или) сдвинуть время достижения максимума на несколько часов, если требуется продлить действие препарата и тем самым сократить кратность приема в целях повышения комплаентности. Таблетки пролонгированного действия (ретард), например, обычно получают прессованием микрогранул лекарственного вещества в биополимерной оболочке или распределением в биополимер- ной матрице. При постепенном (послойном) растворении основы или оболочки высвобождаются очередные порции лекарственного вещества. Современные высокотехнологичные способы доставки позволяют достичь постепенного равномерного высвобождения лекарственного вещества, например за счет создания осмотического давления внутри капсулы с действующим веществом. На этом принципе созданы новые лекарственные формы известных препаратов нифедипина (Коринфар Уно), индапамида (Индапамид ретард-Тева), пирибедила (Проноран®) тамсулозина (Омник Окас), глипизида (Глибенез ретард), тразодона (Триттико). Управляемое (контролируемое) высвобождение может достигаться использованием в таблетках микрокапсул с лекарственным веществом, покрытых специальным полимером. После растворения внешнего слоя внутрь капсулы начинает поступать жидкость и но мере растворения ядра происходят постепенное высвобождение и диффузия лекарственного вещества через мембрану капсулы. Основным фактором, ограничивающим производство и использование подобных лекарственных форм, остается условие необходимости высвобождения всего действующего начала за время прохождения таблеткой основных мест всасывания лекарственных средств в желудочно- кишечном тракте – 4–5 ч.

В последние годы для доставки лекарств применяют системы наночастиц. Наночастицы липидов (липосомы) имеют очевидные преимущества в связи с высокой степенью биосовместимости и универсальностью. Эти системы позволяют создавать фармацевтические препараты для местного, орального, ингаляционного или парентерального пути введения. Проверенная безопасность и эффективность лекарств на основе липосом сделали их привлекательными кандидатами для фармацевтических препаратов, а также вакцин, диагностических средств и нутрицевтики. Липосома в клетке показана на рис. 2.6. Липосомы похожи на пузырьки, которые состоят из многих, нескольких или только одного фосфолипидного бислоя. Полярный характер ядра позволяет улучшить доставку полярных молекул лекарственных веществ, которые необходимо инкапсулировать. Лекарство, инкапсулированное в липосому, представлено на рис. 2.7. Амфифильные и липофильные молекулы растворяются в фосфолипидном бислое в соответствии с их сродством к фосфолипидам. Формирование двухслойных ниосом возможно при участии неионных ПАВ вместо фосфолипидов.

Рис. 2.6.

Рис. 2.7.

Особые технологические проблемы ставят перед разработчиками комбинированные препараты, содержащие несколько активных веществ, требующих для оптимального всасывания различных условий. Разумеется, если требования к месту и времени усвоения для компонентов одинаковы, можно просто таблетировать смесь или при необходимости (например, для ограничения контакта между компонентами при хранении) предварительно гранулировать и капсулировать компоненты. Если компонентам требуются различные отделы ЖКТ для оптимального всасывания, то таблетки прессуют из гранул с разными скоростями растворения. В этом случае возможно также использование технологий многослойного таблетирования или контролируемого высвобождения. Обычно в состав комбинированного лекарственного средства не включают компоненты, отрицательно влияющие на сохранность, усвоение или фармакологическое действие друг друга.

Если компоненты комплексного препарата должны усваиваться в разное время (но в одном месте желудочно-кишечного тракта), то альтернативы раздельному приему нет.

Сублингвальное введение используют для нитроглицерина, потому что препарат немедленно поступает в общий кровоток, минуя кишечную стенку и печень. Однако большинство лекарств нельзя принимать таким способом, потому что они менее активны или обладают раздражающим действием.

Ректальное введение используют в тех случаях, когда больной не может принимать лекарство внутрь из-за тошноты, неспособности глотать или если ему нельзя есть (например, после операции). В ректальной свече ЛС смешано с легкоплавким веществом, которое растворяется после введения в прямую кишку. Тонкая слизистая оболочка прямой кишки хорошо снабжается кровью, поэтому препарат всасывается быстро, минуя печень при первом прохождении.

Инъекционный путь (парентеральное введение ) включает подкожный, внутримышечный и внутривенный способы введения лекарств. В противоположность пероральному введению лекарства, вводимые парентерально, попадают в кровеносное русло, минуя кишечную стенку и печень, поэтому такое введение сопровождается более быстрой и воспроизводимой реакцией. Парентеральное введение используют для следующих ситуаций: больной не может принимать препараты внутрь, ЛС должно попасть в организм быстро и в определенной дозе, а также оно плохо или непредсказуемо всасывается.

При подкожных инъекциях иглу вводят под кожу, и ЛС поступает в капилляры, а затем уносится кровотоком. Подкожное введение используют для многих белковых препаратов, например инсулина, который при приеме внутрь переваривается в ЖКТ. Лекарства для таких инъекций могут представлять собой суспензии или относительно нерастворимые комплексы: это необходимо, чтобы замедлить их поступление в кровь (от нескольких часов до нескольких суток и дольше) и уменьшить частоту введения.

Если надо ввести большой объем ЛС, внутримышечные инъекции предпочтительнее подкожных инъекций. Для таких инъекций используют более длинную иглу.

При внутривенных инъекциях иглу вводят непосредственно в вену. Это труднее выполнить технически по сравнению с другими способами введения, особенно у людей с тонкими, подвижными или склерозированными венами. Внутривенный путь введения однократно инъекционно или непрерывно капельно является самым лучшим способом доставить лекарство по назначению быстро и в точной дозе.

Трансдермальное введение используют для ЛС, которые можно вводить в организм с помощью пластыря, прикладываемого к коже. Такие лекарства, иногда смешанные с химическими веществами, облегчающими проникновение через кожу, попадают в кровоток без инъекции медленно и непрерывно в течение многих часов, дней и даже недель. Однако у некоторых людей на коже в месте контакта с пластырем появляется раздражение. Кроме того, при таком введении лекарство может поступать через кожу недостаточно быстро. Трансдермально вводят только препараты, назначаемые в относительно небольших суточных дозах, например нитроглицерин (от стенокардии), никотин (для отвыкания от курения) и фентанил (для облегчения боли).

Некоторые лекарства, например газы, применяемые для общего наркоза, и средства для лечения бронхиальной астмы в виде аэрозоля, можно вводить в организм ингаляционным путем (вдыханием). Они попадают в легкие и оттуда поступают в кровоток. Так принимают относительно немногие препараты.

Константа скорости абсорбции (К а) характеризует скорость поступления из места введения в кровь.

Схема фармакокинетики лекарственных средств представлена на рис. 2.8.

Рис. 2.8. Фармакокинетика лекарственных средств (схема)

Распределение, метаболизм, выведение лекарственных средств

Распределение изменяется при повышении проницаемости гематоэнцефалического барьера (менингит, энцефалит, ЧМТ, шок, прием кофеина, эуфиллина) и снижении проницаемости гематоэнцефалического барьера (преднизолон, инсулин).

Гидрофильные соединения хуже проникают через гематоэнцефалический барьер (меньше частота побочных действий на ЦНС).

Распределение изменяется при избыточном накоплении лекарства в тканях (липофильные соединения) в случаях ожирения. Объем распределения препарата (V d) характеризует степень его захвата тканями из плазмы (сыворотки) крови. V d (V d = D/C 0) условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D ), чтобы мв сыворотке крови (С0). Распределение изменяется при гипопротеинемии (гепатит, голодание, гломерулонефрит, пожилой возраст), гиперпротеинемии (болезнь Крона, ревматоидный артрит), гипербилирубинемии.

Фазы биотрансформации лекарственных средств представлены на рис. 2.9. Метаболизм липофильных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), одновременном назначении нескольких лекарственных препаратов. Многие витамины, в частности витамин В6, являются кофакторами ферментов, метаболизирующих лекарственные средства. Так, продукты, богатые витамином В6, увеличивают скорость расщепления леводопы. Это снижает концентрацию допамина в крови. Уменьшается выраженность эффектов противопаркинсонических препаратов. С другой стороны, дефицит витамина В6 может снизить интенсивность метаболизма таких препаратов, как изониазид и др.

Общий клиренс препарата (С1 t) характеризует скорость очищения организма от лекарственного препарата. Выделяют почечный (Сlr) и внепочечный (Cl er) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса. Период полувыведения (T 1/2) – время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (T 1/2 = 0,693/K el). Константы скорости элиминации (К еl) и экскреции (К ел) характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость выведения с мочой, калом, слюной и др. Элиминация гидрофобных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), сердечной недостаточности.

Элиминация препаратов изменяется при одновременном назначении лекарственных препаратов, тормозящих активность микросомальных ферментов печени (циметидин) Экскреция гидрофильных препаратов изменяется при изменениях pH мочи, снижении активной канальцевой секреции (гипоксия, инфекция, интоксикация). Реабсорбция и секреция электролитов и неэлектролитов в нефроне представлены на рис. 2.10.

Транспорт лекарств в организме к месту приложения их действия осуществляется жидкими тканями организма – кровью и лимфой. В крови лекарство может находиться в свободном состоянии и в состоянии, связанном с белками и форменными элементами крови. Фармакологически активным, т.е. способным проникать из крови в ткани-мишени и вызывать эффект, является свободная фракция лекарства.

Связанная фракция лекарства представляет собой неактивное депо лекарства и обеспечивает более длительное его существование в организме.

Как правило, оснóвные лекарства связываются с кислым a 1 -гликопротеинами плазмы крови, а кислые лекарства транспортируются на альбуминах. Некоторые лекарственные средства (гормональные, витаминные или медиаторные вещества) могут транспортироваться на специфических белках переносчиках (тироксин-связывающий глобулин, транстеритин, секс-глобулин и др.). Некоторые лекарства могут связываться и транспортироваться на ЛПНП или ЛПВП.

В зависимости от способности связываться с белками все лекарственные средства можно разделить на 2 класса:

· Класс I: Лекарственные средства, которые применяются в дозах меньших, чем число мест их связывания на белках. Такие лекарства в крови практически полностью (на 90-95%) связаны с белком и доля свободной их фракции невелика;

· Класс II: Лекарственные средства, которые применяют в дозах больших, чем число мест их связывания на белках. Такие лекарственные средства в крови находятся преимущественно в свободном состоянии и доля связанной их фракции не превышает 20-30%.

Если пациенту, принимающему лекарство из класса I, которое на 95% связано с белком (например, толбутамид) одновременно ввести другое лекарство, оно начнет конкурировать за места связывания и вытеснит часть первого лекарства. Даже если предположить, что доля вытесненного лекарства составит всего 10% уровень свободной фракции лекарства из класса I составит 5+10=15%, т.е. увеличится в 3 раза (!) и риск развития токсических эффектов у такого пациента будет весьма велик.

Если пациент принимает лекарство из класса II, которое на 30% связано с белком, то при вытеснении 10% за счет назначения другого лекарства, свободная фракция составит всего 70+10=80% или возрастет в 1,14 раза.

Схема 3. Связывание лекарственного средства I класса и II класса с альбумином, в том случае, когда они назначаются по отдельности и совместно. А. I класс лекарственных средств. Доза лекарства меньше, чем число доступных мест связывания. Большая часть молекул лекарства связана с альбумином и концентрация свободной фракции лекарственного средства низкая.

В. II класс лекарственных средств. Доза больше, чем число доступных мест связывания. Большинство молекул альбумина содержат связанное лекарство, но концентрация свободной его фракции все еще остается значительной.



С. Совместное назначение I и II класса лекарственных средств. При одновременном введении происходит вытеснение лекарства I класса из связи с белком и уровень его свободной фракции возрастает.

Таким образом, лекарства, которые в значительной мере связаны с белком обладают более длительным эффектом, но могут вызывать развитие токсических реакций, если на фоне их приема пациенту проводят назначение дополнительного лекарства, без коррекции дозы первого средства.

Некоторые лекарства находятся в крови в связанном с форменными элементами состоянии. Например, на эритроцитах переносится пентоксифиллин, а на лейкоцитах - аминокислоты, некоторые макролиды.

Распределением лекарственных средств называют процесс его распространения по органам и тканям после того, как он поступит в системный кровоток. Именно распределение лекарств обеспечивает его попадание к клеткам-мишеням. Распределение лекарств зависит от следующих факторов:

· Природы лекарственного вещества – чем меньше размеры молекулы и липофильнее лекарство, тем быстрее и равномернее его распределение.

· Размеров органов – чем больше размер органа, тем больше лекарственного средства может поступить в него без существенного изменения градиента концентраций. Например, объем скелетных мышц очень велик, поэтому концентрация лекарства в них остается низкой даже после того, как произошла абсорбция значительного количества лекарства. Напротив, объем головного мозга ограничен и поступление в него даже небольшого количества лекарства сопровождается резким повышением его концентрации в ткани ЦНС и исчезновению градиента.

· Кровоток в органе. В хорошо перфузируемых тканях (мозг, сердце, почки) терапевтическая концентрация вещества создается значительно раньше, чем в тканях плохо перфузируемых (жировая, костная). Если лекарственное средство быстро подвергается разрушению, то в плохо перфузируемых тканях его концентрация может так и не повысится.

· Наличие гистогематических барьеров (ГГБ). ГГБ называют совокупность биологических мембран между стенкой капилляра и тканью, которую он кровоснабжает. Если ткань имеет плохо выраженный ГГБ, то лекарство легко проникает через него. Такая ситауция имеет место в печени, селезенке, красном костном мозге, где имеются капилляры синусоидного типа (т.е. капилляры, в стенке которых имеются отверстия – фенестры). Напротив, в ткани с плотными ГГБ распределение лекарств происходит весьма плохо и возможно лишь для высоколипофильных соединений. Наиболее мощными ГГБ в организме человека являются:

[ Гемато-энцефалический барьер – барьер между кровеносными капиллярами и тканью мозга. Покрывает всю мозговую ткань за исключением гипофиза и дна IV желудочка. При воспалении проницаемость барьера резко возрастает.

[ Гемато-офтальмический барьер – барьер между капиллярами и тканями глазного яблока;

[ Гемато-тиреоидный барьер – барьер между капиллярами и фолликулами щитовидной железы;

[ Гемато-плацентарный барьер – разделяет кровообращение матери и плода. Один из самых мощных барьеров. Практически не пропускает лекарственные вещества с Mr>600 Да вне зависимости от их липофильности. Проницаемость барьера повышается с 32-35 нед беременности. Это связано с его истончением.

[ Гемато-тестикулярный барьер – барьер, который разделяет кровеносные сосуды и ткани яичек.

· Связывание лекарства с белками плазмы. Чем больше связанная фракция лекарства, тем хуже его распределение в ткани. Это связано с тем, что покидать капилляр могут лишь свободные молекулы.

· Депонирование лекарства в тканях. Связывание лекарства с белками тканей способствует его накоплению в них, т.к. снижается концентрация свободного лекарства в периваскулярном пространстве и постоянно поддерживается высокий градиент концентраций между кровью и тканями.

Количественной характеристикой распределения лекарства является кажущийся объем распределения (V d). Кажущийся объем распределения – это гипотетический объем жидкости, в котором может распределиться вся введенная доза лекарства, чтобы создалась концентрация, равная концентрации в плазме крови. Т.о. V d равен отношению введенной дозы (общего количества лекарства в организме) к его концентрации в плазме крови:

.

Рассмотрим две гипотетические ситуации (см. схему 4). Некое вещество А практически не связывается с макромолекулами (жирные извилистые линии на схеме) как в сосудистом, так и во внесосудистом компартментах гипотетического организма. Поэтому вещество А свободно диффундирует между этими двумя компартментами. При введении 20 ЕД вещества в организм состояние устойчивого равновесия возникает при концентрации в крови вещества А в 2 ЕД/л и объем распределения, соответственно, равен 10 л. Вещество В, напротив, прочно связывается с белками крови, диффузия вещества существенно ограничена. При установлении равновесия, только 2 ЕД от общего количества вещества В диффундируют в экстраваскулярный объем, а остальные 18 ЕД остаются в крови и объем распределения составляет 1,1 л. В каждом случае общее количество лекарства в организме одинаковое (20 ЕД), но рассчитанные объемы распределения, как это легко видеть, очень различны.

Схема 4. Влияние связывания веществ тканями на объем их распределения. Пояснения в тексте.

Таким образом, чем больше кажущийся объем распределения, тем большая часть лекарств распределяется в ткани. У человека массой 70 кг объемы жидких сред составляют в целом 42 л (см. схему 5). Тогда, если:

[ V d =3-4 л, то все лекарство распределено в крови;

[ V d <14 л, то все лекарство распределено во внеклеточной жидкости;

[ V d =14-48 л, то все лекарство приблизительно равномерно распределено в организме;

[ V d >48 л, то все лекарство находится преимущественно во внеклеточном пространстве.

Схема 5. Относительная величина различных объемов жидких сред организма, где происходит распределение лекарственных средств у человека массой 70 кг.

Кажущийся объем распределения часто применяют при планировании режима дозирования для расчета нагрузочных доз (D н ) и их коррекции. Нагрузочной называют дозу лекарства, которая позволяет полностью насытить организм лекарственным средством и обеспечить в крови его терапевтическую концентрацию:

ЭЛИМИНАЦИЯ ЛЕКАРСТВ

Элиминацией лекарств (лат. elimino – выносить за порог) – называют совокупность процессов метаболизма и выведения, которые способствуют удалению активной формы лекарства из организма и снижению его концентрации в плазме крови. Элиминация включает в себя 2 процесса: биотрансформацию (метаболизм) и экскрецию лекарств. Основными органами элиминации являются печень и почки. В печени элиминация протекает путем биотрансформации, а в почках – путем экскреции.

Общая фармакология. Фармакокоинетика. Пути и способы введения лекарственных веществ в организм.

Предмет и задачи клинической фармакологии.

Клиническая фармакология (КФ) – наука, изучающая принципы и методы эффективной и безопасной фармакотерапии, способы определения клинической ценности и оптимального применения лекарственных средств (ЛС).

Предметом клинической фармакологии является лекарство в условиях клинической практики.

Фармакокинетика – изменения концентрации лекарственных веществ в средах организма здорового и больного человека, а также механизмы, посредством которых осуществляются эти изменения.

Фармакокинетика - всасывание, распределение, депонирование, превращения

и выведение лекарственных веществ.

Все пути введения лекарственных средств в организм можно разделить на энтеральные и парентеральные. Энтеральные пути введения (enteros – кишечник) обеспечивают введение лекарственного средства в организм через слизистые оболочки желудочно-кишечного тракта. К энтеральным путям введения относят:

· Оральное введение (внутрь, per os) – введение лекарства в организм путем проглатывания. При этом лекарство попадает вначале в желудок и кишечник, где в течение 30-40 мин происходит его всасывание в систему воротной вены. Далее с током крови лекарство поступает в печень, затем в нижнюю полую вену, правые отделы сердца и, наконец, малый круг кровообращения. Этим путем чаще всего вводят твердые и жидкие лекарственные формы (таблетки, драже, капсулы, растворы, пастилки и др.).

· Ректальный путь (>per rectum) – введение лекарства через анальное отверстие в ампулу прямой кишки. Этим путем вводят мягкие лекарственные формы (суппозитории, мази) или растворы (при помощи микроклизмы). Всасывание вещества осуществляется в систему геморроидальных вен. Ректальный путь введения часто применяется у детей первых трех лет жизни.

· Сублингвальное (под язык) и суббукальное (в полость между десной и щекой) введение. Таким способом вводят твердые лекарственные формы (таблетки, порошки), некоторые из жидких форм (растворы) и аэрозоли. При этих способах введения лекарственное средство всасывается в вены слизистой оболочки ротовой полости и далее последовательно поступает в верхнюю полую вену, правые отделы сердца и малый круг кровообращения. После этого лекарство доставляется в левые отделы сердца и с артериальной кровью поступает к органам мишеням.



Парентеральное введение – путь введения лекарственного средства, при котором оно поступает в организм минуя слизистые оболочки желудочно-кишечного тракта.

· Инъекционное введение. При этом пути введения лекарство сразу попадает в системный кровоток, минуя притоки воротной вены и печень. К инъекционному введению относят все способы, при которых повреждается целостность покровных тканей. Они осуществляются при помощи шприца и иглы.

· Внутривенное введение. При этом способе введения игла шприца прокалывает кожу, гиподерму, стенку вены и лекарство непосредственно вводится в системный кровоток (нижнюю или верхнюю полые вены). Лекарство может вводиться струйно медленно или быстро (болюсом), а также капельным способом.

· Внутримышечное введение. Данным путем вводят все виды жидких лекарственных форм и растворы порошков. Иглой шприца прокалывают кожу, гиподерму, фасцию мышцы и затем ее толщу, куда и впрыскивают лекарство. Эффект развивается через 10-15 мин. Объем вводимого раствора не должен превышать 10 мл. При внутримышечном введении лекарство всасывается менее полно, по сравнению с внутривенным введением, но лучше, чем при пероральном применении.

Ингаляционное введение – введение лекарственного вещества путем вдыхания его паров или мельчайших частиц.

Трансдермальное введение – аппликация на кожу лекарственного вещества для обеспечения его системного действия.

Местное нанесение. Включает аппликацию лекарства на кожу, слизистые оболочки глаз (конъюнктиву), носа, гортани.

Механизмы всасывания лекарственных веществ.

Всасывание – это процесс поступления ЛС из места введения в кровь. Всасывание лекарственного вещества зависит от пути введения его в организм, лекарственной формы, физико-химических свойств (растворимости в липидах или гидрофильности вещества), а также от интенсивности кровотока в месте введения.

ЛС, принятые перорально, подвергаются всасыванию, проходя через слизистую оболочку желудочно-кишечного тракта, что определяется их растворимостью в липидах и степенью ионизации. Различают 4 основные механизма всасывания: диффузия, фильтрация, активный транспорт, пиноцитоз.

Пассивная диффузия осуществляется через клеточную мембрану. Всасывание происходит до тех пор, пока концентрация лекарственного вещества по обе стороны биомембраны не сравняется. Подобным образом всасываются липофильные вещества (например, барбитураты, бензодиазепины, метопролол и др.), причем чем выше их липофильность, тем активнее их проникновение через клеточную мембрану. Пассивная диффузия веществ идет без затраты энергии по градиенту концентрации.

Облегченная диффузия – это транспорт лекарственных веществ через биологические мембраны с участием молекул специфических переносчиков. При этом перенос лекарства осуществляется также по градиенту концентрации, но скорость переноса при этом значительно выше. Например, таким образом всасывается цианокобаламин. В осуществлении его диффузии участвует специфический белок – гастромукопротеид (внутренний фактор Кастла), образующийся в желудке. Если продукция этого соединения нарушена, то снижается всасывание цианокобаламина и, как следствие этого, развивается пернициозная анемия.

Фильтрация осуществляется через поры клеточных мембран. Этот механизм пассивного всасывания идет без затраты энергии и осуществляется по градиенту концентрации. Характерен для гидрофильных веществ (например, атенолол, лизиноприл и др.), а также ионизированных соединений.

Активный транспорт осуществляется с участием специфических транспортных систем клеточных мембран. В отличие от пассивной диффузии и фильтрации активный транспорт процесс энергозатратный и способен осуществляться против градиента концентрации. В данном случае несколько веществ могут конкурировать за один и тот же транспортный механизм. Способы активного транспорта обладают высокой специфичностью, поскольку сформировались в процессе длительной эволюции организма для обеспечения его физиологических потребностей. Именно эти механизмы являются основными для осуществления доставки в клетки питательных веществ и выведения продуктов обмена.

Пиноцитоз (корпускулярная абсорбция или пенсорбция) представляет также разновидность всасывания с затратой энергии, осуществление которого возможно против градиента концентрации. При этом происходит захват лекарственного вещества и инвагинация клеточной мембраны с образованием вакуоли, которая направляется к противоположной стороне клетки, где происходит экзоцитоз с высвобождением лекарственного соединения.

Распределение лекарств – это распространение лекарственных веществ по органам и тканям после их попадания в системный кровоток. Зависит главным образом от природы лекарства, интенсивности кровотока в тканях, проницаемости гистогематических барьеров, а также связывания молекул лекарства с белками плазмы крови и в тканях.

1. Природа лекарств. Определяет прежде всего возможность переноса через биологические барьеры. Наибольшее значение имеют размеры молекул и их полярность, степень ионизации. Большинство гидрофильных лекарственных веществ не проникают в клетки и распределяются в основном в плазме крови и интерстициальной жидкости. Липофильные лекарства относительно легко проникают через гистогематические барьеры, диффундируют в клетки и распределяются в организме более равномерно.

2. Кровоток. Приток крови обеспечивает доставку лекарства в ткани и таким образом влияет на скорость захвата лекарственного вещества тканями. В результате в хорошо перфузируемых тканях (например, мозг, сердце, почки) большие тканевые концентрации создаются раньше, чем в плохо перфузируемых (например, жировой, костной). Если при этом лекарство быстро элиминируется, то его концентрация в плохо перфузируемых тканях может никогда существенно и не повысится.

3. Связывание лекарств с белками плазмы. Затрудняет диффузию лекарства в периферические ткани. Это происходит вследствие того, что диффундировать через поры в капиллярах могут только свободные молекулы.

Самой большой фракцией белков в плазме крови является альбумин. Более высокое сродство альбумин проявляет к гидрофобным веществам и лекарствам, являющимся слабыми кислотами.

Связывание лекарственных веществ с белками плазмы крови процесс обратимый и не является специфичным. Лекарственные вещества, при их одновременном назначении могут конкурировать за места связывания на белковых молекулах и вытеснять друг друга.

Уменьшение связывания лекарственного вещества с белками плазмы может привести к существенному увеличению фракции его свободных молекул в крови и явиться причиной чрезмерного усиления фармакологического действия лекарства.

4. Гистогематические барьеры. Это барьеры между кровью и тканями, образованные стенкой капилляров. Не одинаковы в различных органах и тканях. Например, в ЦНС он наименее проницаем, так как в его образовании принимают участие еще и клетки нейроглии:

В целом перенос лекарственных веществ через подобного рода барьеры подчиняется закономерностям, характерным для механизмов абсорбции, описанным ранее, и зависит от природы вещества: лучше переносятся неполярные липофильные вещества, хуже – полярные, гидрофильные.

Многие лекарства в физиологических условиях не проникают через гистогематические барьеры, например, маннитол, высокомолекулярные декстраны (полиглюкин).

Через гематоэнцефалический барьер не проникают нейромедиаторы и плохо проходят полярные соединения.

5. Связывание лекарства в тканях. Способствует переходу лекарства из крови и накоплению его в тканях, так как связывание понижает концентрацию свободных молекул лекарственного вещества непосредственно в периваскулярном пространстве и таким образом поддерживает высоким градиент способных к диффузии (несвязанных) молекул вещества. Это может приводить к значительному накоплению (депонированию) лекарства в периферических тканях. При обратимом связывании лекарственное вещество может постепенно высвобождаться из депо и, при понижении его концентрации в крови, снова подвергаться распределению.

О распределении лекарств принято судить по объему распределения.

Объем распределения (V d - от Volume of distribution) связывает количество лекарства в организме с его концентрацией в плазме в соответствии со следующим уравнением: .

Количественно равен условному объему в котором следовало бы распределить все лекарство, содержащееся в организме, чтобы его концентрация в этом объеме была равна таковой в плазме.

Если лекарство имеет очень большой объем распределения, значительно превышающий физический объем тела, это означает, что лекарственное вещество в основном находится в периферических тканях в связанном состоянии. Такие лекарства не могут быть эффективно удалены из организма с помощью гемодиализа. С другой стороны, вещества, которые полностью остаются в плазме, будут иметь объем распределения равный объему плазмы (приблизительно 3 ‒ 4 литра), что характерно для высокомолекулярных соединений, не проникающих в клетки крови и через поры в капиллярах (например, гепарин).

Если Vd равен 15 л (суммарный объем плазмы крови и интерстициальной жидкости) лекарство преимущественно распределено внеклеточно, что характерно для гидрофильных веществ, таких, например, как аминогликозидные антибиотики.

При величине объема распределения порядка 40 л (объем всех жидкостей в организме) лекарство вероятнее всего находится как во внеклеточной, так и внутриклеточной жидкостях, то есть проникает через клеточные мембраны, что характерно для распределения липофильных неполярных веществ.

Величина объема распределения играет важную роль в оценке элиминации лекарственных веществ из организма (при прочих равных условиях вещество с большим Vd будет элиминироваться медленнее и наоборот), а также учитывается при определении нагрузочной дозы: нагрузочная доза = желаемая (или целевая) концентрация лекарственного вещества х Vd.

Еще по теме Транспорт и распределение лекарств в организме. Связывание лекарственных веществ белками плазмы крови. Транспорт через гистогематические барьеры. Депонирование лекарств в тканях. Объем распределения.:

  1. Связывание лекарственных средств с белками плазмы крови
  2. Значение индивидуальных особенностей организма для действия лекарственных веществ. Половые и возрастные различия в действии лекарств и причины их обусловливающие. Дозирование лекарств в зависимости от возраста. Применение лекарств у женщин во время беременности и лактации. Влияние генетических и патологических состояний организма на проявление фармакологического эффекта.
  3. Биологические барьеры и особенности распределения лекарственных средств в организме
  4. Биотрансформация лекарственных веществ в организме. Несинтетические и синтетические реакции метаболизма лекарств. Роль микросомальных ферментов печени. Эффект первого прохождения. Внепеченочный метаболизм лекарственных веществ. Понятие о «пролекарствах». Индивидуальные различия в скорости инактивации лекарств и причины их обусловливающие.

Основные вопросы для обсуждения

Всасывание лекарственных веществ из места введения в кровь. Механизмы всасывания. Факторы, влияющие на процесс всасы­вания. Транспорт лекарственных веществ с кровью.

Значение связывания лекарственных веществ с белками плазмы крови.

Распределение лекарственных веществ в организме. Факторы, влияющие на распределение лекарственных веществ в орга­низме. Гистогематнческие барьеры. 1ематоэнцефалический и плацентарный барьеры. Круги циркуляции лекарственных ве­ществ; энтерогепатический круг циркуляции и его значение. Фармакокинетические показатели, характеризующие процессы всасывания и распределения. Биодоступность лекарственных веществ и методы ее расчета.

Определение исходного уровня

Инструкция: выберите один или несколько правильных ответов для предложенных ниже тестовых вопросов.

Вариант I

А. Всасывание лекарственных веществ. Б. Распределение лекарственных веществ в организме. В. Взаимодействие с мишенями в организме. Г Фармакологические эффекты. Д. Метаболизм. Е. Выведение.

2. Основной механизм всасывание лекарственных веществ из ЖК"Г в кровь:

А. Фильтрация. Б. Пассивная диффузия. В. Активный транспорт. Г. Пиноцитоз.

3. При повышении ионизации слабых электролитов их вса­сывание «з ЖК"Г в кровь:

А. Усиливается. Б. Снижается. В. Не изменяется.

4. Всасывание лекарственных веществ по механизму пассив­ной диффузии:

5. Лекарственные вещества, связанные с белками плазмы крови:

А. Фармакологически активные. Б. Фармакологически неактивные. В. Медленно метаболизируются, Г. Не выво­дятся почками.

Вариант 2

1. Понятие «фармакокинетика» включает:

А. Всасывание лекарственных веществ. Б. Депонирова­ние лекарственных веществ. В. Локализацию действия. Г Биотрансформацию. Д. Экскрецию.

2. Через гистогематические барьеры легче проникают:

А. Полярные гидрофильные вещества. Б. Неполярные липофильные вещества.

3. Из Ж КТ в кровь хорошо всасываются:

А. Ионизированные молекулы. Б. Пеионизированные молекулы. В. Гидрофильные молекулы. Г. Липофильные молекулы.

4. Всасывание лекарственных веществ по механизму актив* к ого транспорта:

А. Сопровождается затратой метаболической энергии. Б. Не сопровождается затратой метаболической энергии.

5. Лекарственные вещества, не связанные с белками плазмы крови:

А. Оказывают фармакологические эффекты. Б. Не оказы­вают фармакологических эффектов. В. Выводятся почка­ми. Г. Не выводятся почками.

Самостоятельная работа

Задание I. Заполните таблицу:

Механизмы всасывания лекарственных веществ в кровь и их характеристика


Задание 2. Заполните таблицу. На основании данных та­блицы определите, какие из препаратов могут применяться как средства:

А. Для купирования приступов стенокардии. Б. Для профи­лактики и лечения стенокардии.

Задание 3. Заполните таблицу.

Фармакокинетические показатели


На основании фармакокинетических показателей обсудите с преподавателем вопросы о:

Скорости и полноте всасывания;

Быстроте развития максимального фармакологического эффекта;

Уровне свободных и связанных молекул в плазме крови;

Распределении в органах и тканях и возможности при­менения их при беременности и лактации.

Задание 4. Ситуационная задача.

Здоровым добровольцам вводили аторвастатин (липримар) внутривенно 1 мл 1 % раствора и перорально в таблетках в дозе 10 мг.

Площадь под кривой (А11С) «концентрация в крови - вре­мя» при в/в введении составляла 44,5мкг/мин/мл*\ а при пе- роральном - 43,2 мкг/мин/мл-1.

Рассчитайте биодоступность таблеток аторвастатина (ли- примара).

Экспериментальная работа

Опыт 1. Два изолированных желудка крысы заполняют

0, 2% раствором ацетилсалициловой кислоты и 5% раство­ром анальгина. рН среды в желудке, равный 2, устанавлива­ют 0,1 н. раствором НС). Два изолированных отрезка тонкой кишки крысы (длиной 5-8 см) также заполняют 0,2% раство­ром ацетилсалициловой кислоты и 5% раствором анальгина. Значение рН среды в кишечнике, равное 8,0. устанавливают 2% раствором №НСО,. Желудки и отрезки тонкой кишки, заполненные ацетилсалициловой кислотой, помещают в хи­мические стаканчика с 0,9% раствором №С1, куда добавляют индикаторы РеС1ч. Желудки и отрезки тонкой кишки, запол­ненные раствором анальгина, помещают в стаканчик с при­готовленным ранее индикатором (5 мл 95% этилового спирта + 0,5 мл разведенной НС1 + 5 мл 0,1 н. раствора ЭД03). О ско­рости и полноте всасывания лекарственных веществ судят по времени появления окрашивания и его интенсивности. Ре­зультаты записывают в таблицу и делают вывод о зависимости всасывания лекарственных веществ из желудка и кишечника от их кислотно-основных свойств:

Лекар­

ственное

вещество

Кислотно-

основные

свойства

Ионизация Интенсивность окрашивания через
рН рН 5 мни 30 мин 60 мин
Ж К Ж К Ж К
Анальгин
Ацетилса­

лициловая


Контроль усвоения темы (тестовые задания)

Инструкция; выберите один или несколько правильных ответов для предложенных ниже тестовых вопросов, вариант /

/. Какой механизм всасывания лекарственных веществ со­провождается затратой метаболической энергии Т Л. Пиноцитоз. В. Ультрафильтрация. В. Пассивная диффу­зия. Г. Активный транспорт.

2. Молекулы лекарственных веществу связанные с 6елками плазмы крови:

A. Фармакологически активны. Г>. Выводятся почками.

B.Фармакологически неактивны. Г. Не выводятся ночка­ми. Д. Создают депо препарата в крови.

3. При увеличении диссоциированных молекул лекарственно­го вещества его всасывание из ЖКТ:

Л. Уменьшается. В. Увеличивается.

4. Лекарственные вещества из организма матери в организм плода переходят через:

А. Гематоэнцефалический барьер. Б. Плацентарный ба­рьер. В. Гематоофтальмический барьер.

5. Гидрофильные лекарственные вещества распределяются преимущественно в:

А. Межклеточной жидкости. Б. Почках. В. Жировых депо.

6. Количество неизмененного лекарственного вещества, ко­торое достигло плазмы крови, относительно введенной дозы препарата называется:

А. Всасывание. Б. Экскреция. В. Биотрансформация. Г. Биодоступность.

7. Как изменится эффект дигоксина при одновременном на­значении с диклофенаком, если известно, что последний вытесняет дигоксин из комплекса с белками плазмы?

А. Увеличится. Б. Уменьшится. В. Не изменился.

8. Какие факторы влияют на распределение лекарственных веществ в организме*

А. Физико-химические свойства. Б. Способность прони­кать через гистогематические барьеры. В. Скорость кро­вотока в органах и тканях. Г. Способность связываться с белками плазмы крови. Д. Все верно.

9. Лекарственные вещества основного характера, принятые перора,гъно, оптимально всасываются в:

А. Желудке. Б. Двенадцатиперстной кишке. В. На всем протяжении Ж КТ.

Вариант 2

1. Для какого механизма всасывания характерны выпячива­ние мембраны клетки, захват мельчайших капелек жидко­сти или твердых частиц и переход их внутрь клетки?

А. Пассивная диффузия. Б. Активный транспорт. В. Филь­трация. Г. Пиноцитоз.

2. Лекарственные вещества кислого характера, принятые перорально, оптимально всасываются в:

А. Желудке. Б. Двенадцатиперстной кишке. В. Прямой кишке. Г На всем протяжении ЖКТ.

3. Лекарственные вещества из крови в клетки мозга пере­ходит через.