Skupni večkratnik števil. Kako najti LCM (najmanjši skupni večkratnik)


Spodaj predstavljeno gradivo je logično nadaljevanje teorije iz članka z naslovom LCM - najmanjši skupni večkratnik, definicija, primeri, povezava med LCM in GCD. Tukaj bomo govorili o iskanje najmanjšega skupnega večkratnika (LCM), posebno pozornost pa bomo posvetili reševanju primerov. Najprej bomo pokazali, kako se LCM dveh števil izračuna z uporabo GCD teh števil. Nato si bomo ogledali iskanje najmanjšega skupnega večkratnika z razlaganjem števil na prafaktorje. Nato se bomo osredotočili na iskanje LCM treh ali več števil, pozorni pa bomo tudi na izračun LCM negativnih števil.

Navigacija po strani.

Izračun najmanjšega skupnega večkratnika (LCM) prek GCD

Eden od načinov za iskanje najmanjšega skupnega večkratnika temelji na razmerju med LCM in GCD. Obstoječa povezava med LCM in GCD nam omogoča, da izračunamo najmanjši skupni večkratnik dveh pozitivnih celih števil preko znanega največjega skupnega delitelja. Ustrezna formula je LCM(a, b)=a b:NOT(a, b) . Oglejmo si primere iskanja LCM z dano formulo.

Primer.

Poiščite najmanjši skupni večkratnik dveh števil 126 in 70.

rešitev.

V tem primeru a=126 , b=70 . Uporabimo povezavo med LCM in GCD, izraženo s formulo LCM(a, b)=a b:NOT(a, b). To pomeni, da moramo najprej poiskati največji skupni delitelj števil 70 in 126, nato pa lahko izračunamo LCM teh števil s pomočjo zapisane formule.

Poiščimo NOD(126, 70) z evklidskim algoritmom: 126=70·1+56, 70=56·1+14, 56=14·4, torej NOD(126, 70)=14.

Zdaj poiščemo zahtevani najmanjši skupni večkratnik: GCD(126, 70)=126·70:GCD(126, 70)= 126·70:14=630.

odgovor:

LCM(126, 70)=630.

Primer.

Čemu je enako LCM(68, 34)?

rešitev.

Ker 68 je deljivo s 34, potem je GCD(68, 34)=34. Zdaj izračunamo najmanjši skupni večkratnik: GCD(68, 34)=68·34:GCD(68, 34)= 68·34:34=68.

odgovor:

LCM(68, 34)=68.

Upoštevajte, da prejšnji primer ustreza naslednjemu pravilu za iskanje LCM za pozitivna cela števila a in b: če je število a deljivo z b, potem je najmanjši skupni večkratnik teh števil a.

Iskanje LCM z razlaganjem števil na prafaktorje

Drug način za iskanje najmanjšega skupnega večkratnika temelji na faktoriziranju števil na prafaktorje. Če sestavite produkt iz vseh prafaktorjev danih števil in nato iz tega produkta izločite vse skupne prafaktorje, ki so prisotni v razčlembah danih števil, potem bo dobljeni produkt enak najmanjšemu skupnemu večkratniku danih števil .

Navedeno pravilo za iskanje LCM izhaja iz enakosti LCM(a, b)=a b:NOT(a, b). Zmnožek števil a in b je namreč enak zmnožku vseh faktorjev, ki sodelujejo pri razširitvi števil a in b. V zameno je GCD(a, b) enak zmnožku vseh prafaktorjev, ki so hkrati prisotni v razširitvah števil a in b (kot je opisano v razdelku o iskanju GCD z uporabo ekspanzije števil v prafaktorje).

Dajmo primer. Naj vemo, da je 75=3·5·5 in 210=2·3·5·7. Sestavimo produkt iz vseh faktorjev teh razširitev: 2·3·3·5·5·5·7 . Sedaj iz tega produkta izločimo vse faktorje, ki so prisotni tako v ekspanziji števila 75 kot v ekspanziji števila 210 (ta faktorja sta 3 in 5), potem bo produkt dobil obliko 2·3·5·5·7 . Vrednost tega produkta je enaka najmanjšemu skupnemu večkratniku 75 in 210, to je NOC(75, 210)= 2·3·5·5·7=1,050.

Primer.

Razčlenite števili 441 in 700 na prafaktorje in poiščite najmanjši skupni večkratnik teh števil.

rešitev.

Razložimo števili 441 in 700 na prafaktorje:

Dobimo 441=3·3·7·7 in 700=2·2·5·5·7.

Sedaj pa ustvarimo produkt iz vseh dejavnikov, ki sodelujejo pri razširitvi teh števil: 2·2·3·3·5·5·7·7·7. Iz tega zmnožka izločimo vse faktorje, ki so istočasno prisotni v obeh razširitvah (obstaja samo en tak faktor - to je število 7): 2·2·3·3·5·5·7·7. torej LCM(441, 700)=2·2·3·3·5·5·7·7=44 100.

odgovor:

NOC(441, 700)= 44 100 .

Pravilo za iskanje LCM z uporabo faktorizacije števil na prafaktorje lahko formuliramo nekoliko drugače. Če faktorjem iz razširitve števila a prištejemo manjkajoče faktorje iz razširitve števila a, bo vrednost dobljenega produkta enaka najmanjšemu skupnemu večkratniku števil a in b.

Na primer, vzemimo isti števili 75 in 210, njuni razčlembi na prafaktorje so naslednji: 75=3·5·5 in 210=2·3·5·7. Faktorjem 3, 5 in 5 iz razširitve števila 75 prištejemo manjkajoča faktorja 2 in 7 iz razširitve števila 210, dobimo produkt 2·3·5·5·7, katerega vrednost je enako LCM(75, 210).

Primer.

Poiščite najmanjši skupni večkratnik števil 84 in 648.

rešitev.

Najprej dobimo razčlenitve števil 84 in 648 na prafaktorje. Videti sta kot 84=2·2·3·7 in 648=2·2·2·3·3·3·3. Faktorjem 2, 2, 3 in 7 iz razširitve števila 84 prištejemo manjkajoče faktorje 2, 3, 3 in 3 iz razširitve števila 648, dobimo produkt 2 2 2 3 3 3 3 7, kar je enako 4 536 . Tako je želeni najmanjši skupni večkratnik 84 in 648 4.536.

odgovor:

LCM(84, 648)=4,536.

Iskanje LCM treh ali več števil

Najmanjši skupni večkratnik treh ali več števil je mogoče najti z zaporednim iskanjem LCM dveh števil. Spomnimo se ustreznega izreka, ki nam pomaga najti LCM treh ali več števil.

Izrek.

Naj so dana pozitivna cela števila a 1 , a 2 , …, a k, najmanjši skupni večkratnik m k teh števil najdemo z zaporednim izračunom m 2 = LCM(a 1 , a 2) , m 3 = LCM(m 2 , a 3) , … , m k = LCM(m k−1 , a k) .

Oglejmo si uporabo tega izreka na primeru iskanja najmanjšega skupnega večkratnika štirih števil.

Primer.

Poiščite LCM štirih števil 140, 9, 54 in 250.

rešitev.

V tem primeru je a 1 =140, a 2 =9, a 3 =54, a 4 =250.

Najprej najdemo m 2 = LOC(a 1 , a 2) = LOC(140, 9). Da bi to naredili, z uporabo evklidskega algoritma določimo GCD(140, 9), imamo 140=9·15+5, 9=5·1+4, 5=4·1+1, 4=1·4, torej GCD(140, 9)=1 , od koder je GCD(140, 9)=140 9:GCD(140, 9)= 140·9:1=1,260. To je m 2 =1 260.

Zdaj najdemo m 3 = LOC (m 2 , a 3) = LOC (1 260, 54). Izračunajmo ga preko GCD(1 260, 54), ki ga prav tako določimo z evklidskim algoritmom: 1 260=54·23+18, 54=18·3. Potem je gcd(1,260, 54)=18, iz česar je gcd(1,260, 54)= 1,260·54:gcd(1,260, 54)= 1,260·54:18=3,780. To je m 3 =3 780.

Vse kar ostane je najti m 4 = LOC (m 3, a 4) = LOC (3 780, 250). Da bi to naredili, najdemo GCD(3,780, 250) z uporabo evklidskega algoritma: 3,780=250·15+30, 250=30·8+10, 30=10·3. Zato je GCM(3,780, 250)=10, od koder je GCM(3,780, 250)= 3 780 250: GCD(3 780, 250)= 3.780·250:10=94.500. To je m 4 =94.500.

Torej je najmanjši skupni večkratnik prvotnih štirih števil 94.500.

odgovor:

LCM(140, 9, 54, 250)=94.500.

V mnogih primerih je priročno najti najmanjši skupni večkratnik treh ali več števil z uporabo prafaktoriziranja danih števil. V tem primeru se morate držati naslednjega pravila. Najmanjši skupni večkratnik več števil je enak zmnožku, ki je sestavljen takole: manjkajočim faktorjem iz razširitve drugega števila se prištejejo vsi faktorji iz razširitve prvega števila, manjkajoči faktorji iz razširitve števila tretje število se doda nastalim faktorjem itd.

Oglejmo si primer iskanja najmanjšega skupnega večkratnika z uporabo prafaktorizacije.

Primer.

Poiščite najmanjši skupni večkratnik petih števil 84, 6, 48, 7, 143.

rešitev.

Najprej dobimo dekompozicije teh števil na prafaktorje: 84=2·2·3·7, 6=2·3, 48=2·2·2·2·3, 7 (7 je praštevilo, sovpada z njegovo razgradnjo na prafaktorje) in 143=11·13.

Če želite najti LCM teh števil, faktorjem prvega števila 84 (so 2, 2, 3 in 7), morate dodati manjkajoče faktorje iz razširitve drugega števila 6. Razgradnja števila 6 ne vsebuje manjkajočih faktorjev, saj sta tako 2 kot 3 prisotna že v razgradnji prvega števila 84. Nato faktorjem 2, 2, 3 in 7 prištejemo manjkajoča faktorja 2 in 2 iz razširitve tretjega števila 48, dobimo množico faktorjev 2, 2, 2, 2, 3 in 7. Temu nizu v naslednjem koraku ne bo treba dodajati množiteljev, saj je 7 že v njem. Na koncu faktorjem 2, 2, 2, 2, 3 in 7 prištejemo manjkajoča faktorja 11 in 13 iz razširitve števila 143. Dobimo produkt 2·2·2·2·3·7·11·13, kar je enako 48.048.

Oglejmo si tri načine za iskanje najmanjšega skupnega večkratnika.

Iskanje s faktorizacijo

Prva metoda je iskanje najmanjšega skupnega večkratnika z faktorjevanjem danih števil na prafaktorje.

Recimo, da moramo najti LCM števil: 99, 30 in 28. Da bi to naredili, razložimo vsako od teh števil na prafaktorje:

Da bi bilo želeno število deljivo z 99, 30 in 28, je nujno in dovolj, da vsebuje vse prafaktorje teh deliteljev. Da bi to naredili, moramo vzeti vse prafaktorje teh števil do največje možne stopnje in jih pomnožiti skupaj:

2 2 3 2 5 7 11 = 13.860

Tako je LCM (99, 30, 28) = 13.860 Nobeno drugo število, manjše od 13.860, ni deljivo z 99, 30 ali 28.

Če želite poiskati najmanjši skupni večkratnik danih števil, jih faktorizirajte v njihove prafaktorje, nato vzamete vsak prafaktor z največjim eksponentom, v katerem se pojavi, in te faktorje pomnožite skupaj.

Ker relativno praštevila nimajo skupnih praštevil, je njihov najmanjši skupni večkratnik enak produktu teh števil. Na primer, tri števila: 20, 49 in 33 so sorazmerno praštevila. zato

LCM (20, 49, 33) = 20 49 33 = 32.340.

Enako je treba storiti pri iskanju najmanjšega skupnega večkratnika različnih praštevil. Na primer, LCM (3, 7, 11) = 3 7 11 = 231.

Iskanje z izbiro

Druga metoda je iskanje najmanjšega skupnega večkratnika z izbiro.

Primer 1. Ko največje od danih števil delimo z drugim danim številom, je LCM teh števil enak največjemu izmed njih. Na primer, dana so štiri števila: 60, 30, 10 in 6. Vsako od njih je deljivo s 60, torej:

LCM(60, 30, 10, 6) = 60

V drugih primerih se za iskanje najmanjšega skupnega večkratnika uporabi naslednji postopek:

  1. Iz navedenih števil določi največje število.
  2. Nato poiščemo števila, ki so večkratnika največjega števila, ga pomnožimo z naravnimi števili v naraščajočem vrstnem redu in preverimo, ali je dobljeni produkt deljiv s preostalimi danimi števili.

Primer 2. Dana so tri števila 24, 3 in 18. Določimo največje od njih - to je število 24. Nato poiščemo števila, ki so večkratnika 24, in preverimo, ali je vsako od njih deljivo z 18 in 3:

24 · 1 = 24 - deljivo s 3, vendar ne deljivo z 18.

24 · 2 = 48 - deljivo s 3, vendar ne deljivo z 18.

24 · 3 = 72 - deljivo s 3 in 18.

Tako je LCM (24, 3, 18) = 72.

Iskanje z zaporednim iskanjem LCM

Tretja metoda je iskanje najmanjšega skupnega večkratnika z zaporednim iskanjem LCM.

LCM dveh danih števil je enak produktu teh števil, deljenem z njihovim največjim skupnim deliteljem.

Primer 1. Poiščite LCM dveh danih števil: 12 in 8. Določite njun največji skupni delitelj: GCD (12, 8) = 4. Pomnožite ta števila:

Izdelek delimo po njihovem gcd:

Tako je LCM (12, 8) = 24.

Če želite najti LCM treh ali več števil, uporabite naslednji postopek:

  1. Najprej poiščite LCM katerih koli dveh od teh števil.
  2. Nato LCM najdenega najmanjšega skupnega večkratnika in tretje dano število.
  3. Nato LCM nastalega najmanjšega skupnega večkratnika in četrtega števila itd.
  4. Tako se iskanje LCM nadaljuje, dokler so številke.

Primer 2. Poiščemo NKM treh danih števil: 12, 8 in 9. NKM števil 12 in 8 smo našli že v prejšnjem primeru (to je število 24). Ostaja še iskanje najmanjšega skupnega večkratnika števila 24 in tretjega danega števila - 9. Določite njihov največji skupni delitelj: GCD (24, 9) = 3. Pomnožite LCM s številom 9:

Izdelek delimo po njihovem gcd:

Tako je LCM (12, 8, 9) = 72.

Toda veliko naravnih števil je deljivih tudi z drugimi naravnimi števili.

Na primer:

Število 12 je deljivo z 1, z 2, s 3, s 4, s 6, z 12;

Število 36 je deljivo z 1, z 2, s 3, s 4, s 6, z 12, z 18, s 36.

Števila, s katerimi je število deljivo s celoto (pri 12 so to 1, 2, 3, 4, 6 in 12), se imenujejo delitelji števil. Delitelj naravnega števila a- je naravno število, ki deli dano število a brez sledu. Naravno število, ki ima več kot dva delitelja, imenujemo sestavljeno .

Upoštevajte, da imata števili 12 in 36 skupne faktorje. Ta števila so: 1, 2, 3, 4, 6, 12. Največji delitelj teh števil je 12. Skupni delitelj teh dveh števil a in b- to je število, s katerim sta obe dani števili deljeni brez ostanka a in b.

Skupni večkratniki več števil je število, ki je deljivo z vsakim od teh števil. Na primer, imajo števila 9, 18 in 45 skupni večkratnik 180. Toda 90 in 360 sta tudi njuna skupna večkratnika. Med vsemi skupnimi mnogokratniki je vedno najmanjši, v tem primeru je to 90. To število imenujemo najmanjšiskupni večkratnik (CMM).

LCM je vedno naravno število, ki mora biti večje od največjega izmed števil, za katera je definirano.

Najmanjši skupni večkratnik (LCM). Lastnosti.

Komutativnost:

Asociativnost:

Zlasti, če sta in soprosti števili, potem:

Najmanjši skupni večkratnik dveh celih števil m in n je delitelj vseh drugih skupnih mnogokratnikov m in n. Poleg tega množica skupnih večkratnikov m, n sovpada z množico večkratnikov za LCM( m, n).

Asimptotiko za je mogoče izraziti v smislu nekaterih številsko-teoretičnih funkcij.

Torej, Čebiševljeva funkcija. In tudi:

To izhaja iz definicije in lastnosti Landauove funkcije g(n).

Kaj sledi iz zakona porazdelitve praštevil.

Iskanje najmanjšega skupnega večkratnika (LCM).

NOC( a, b) se lahko izračuna na več načinov:

1. Če je največji skupni delitelj znan, lahko uporabite njegovo povezavo z LCM:

2. Naj je znana kanonična razgradnja obeh števil na prafaktorje:

kje p 1 ,...,p k- različna praštevila in d 1 ,...,d k in e 1 ,...,e k— nenegativna cela števila (lahko so ničle, če ustreznega praštevila ni v razširitvi).

Potem NOC ( a,b) se izračuna po formuli:

Z drugimi besedami, dekompozicija LCM vsebuje vse prafaktorje, vključene v vsaj eno od dekompozicij števil a, b, in vzame se največji od dveh eksponentov tega množitelja.

Primer:

Izračun najmanjšega skupnega večkratnika več števil se lahko zmanjša na več zaporednih izračunov LCM dveh števil:

Pravilo.Če želite najti LCM serije števil, potrebujete:

- razstavljajo števila na prafaktorje;

- največji razpad (zmnožek faktorjev največjega števila danih) prenesemo na faktorje želenega produkta, nato pa dodamo faktorje iz razčlenitve ostalih števil, ki se ne pojavljajo v prvem številu ali se pojavljajo v njem. manjkrat;

— dobljeni produkt prafaktorjev bo LCM danih števil.

Vsaki dve ali več naravnih števil ima svoj LCM. Če števili nista večkratnika drug drugega ali nimata enakih faktorjev v razširitvi, potem je njihov LCM enak produktu teh števil.

Prafaktorje števila 28 (2, 2, 7) dopolnimo s faktorjem 3 (število 21), dobljeni produkt (84) bo najmanjše število, ki je deljivo z 21 in 28.

Prafaktorje največjega števila 30 dopolnimo s faktorjem 5 števila 25, dobljeni produkt 150 je večji od največjega števila 30 in je deljiv z vsemi danimi števili brez ostanka. To je najmanjši možni produkt (150, 250, 300 ...), ki je večkratnik vseh danih števil.

Števila 2,3,11,37 so praštevila, zato je njihov LCM enak produktu danih števil.

Pravilo. Če želite izračunati LCM praštevil, morate vsa ta števila pomnožiti skupaj.

Druga možnost:

Če želite najti najmanjši skupni večkratnik (LCM) več števil, potrebujete:

1) predstavi vsako število kot produkt njegovih prafaktorjev, na primer:

504 = 2 2 2 3 3 7,

2) zapiši potence vseh prafaktorjev:

504 = 2 2 2 3 3 7 = 2 3 3 2 7 1,

3) zapišite vse glavne delitelje (množitelje) vsakega od teh števil;

4) izberite največjo stopnjo vsakega od njih, ki jo najdete v vseh razširitvah teh števil;

5) pomnožite te moči.

Primer. Poiščite LCM števil: 168, 180 in 3024.

rešitev. 168 = 2 2 2 3 7 = 2 3 3 1 7 1,

180 = 2 2 3 3 5 = 2 2 3 2 5 1,

3024 = 2 2 2 2 3 3 3 7 = 2 4 3 3 7 1.

Zapišemo največje potence vseh pradeliteljev in jih pomnožimo:

NOC = 2 4 3 3 5 1 7 1 = 15120.

Največji skupni delitelj in najmanjši skupni večkratnik sta ključna pojma aritmetike, zaradi katerih je delo z ulomki preprosto. LCM in se najpogosteje uporabljata za iskanje skupnega imenovalca več ulomkov.

Osnovni pojmi

Delitelj celega števila X je drugo celo število Y, s katerim se X deli brez ostanka. Na primer, delitelj 4 je 2, 36 pa 4, 6, 9. Večkratnik celega števila X je število Y, ki je deljivo z X brez ostanka. Na primer, 3 je večkratnik 15 in 6 je večkratnik 12.

Za vsak par števil lahko najdemo njihove skupne delitelje in večkratnike. Na primer, za 6 in 9 je skupni večkratnik 18, skupni delitelj pa 3. Očitno imajo pari lahko več deliteljev in večkratnikov, zato se pri izračunih uporablja največji delitelj GCD in najmanjši večkratnik LCM.

Najmanjši delitelj je brez pomena, saj je za vsako število vedno ena. Tudi največji mnogokratnik je nesmiseln, saj gre zaporedje večkratnikov v neskončnost.

Iskanje gcd

Obstaja veliko metod za iskanje največjega skupnega delitelja, med katerimi so najbolj znane:

  • zaporedno iskanje deliteljev, izbiranje skupnih za par in iskanje največjega med njimi;
  • razstavljanje števil na nedeljive faktorje;
  • Evklidski algoritem;
  • binarni algoritem.

Danes sta v izobraževalnih ustanovah najbolj priljubljeni metodi dekompozicija na prafaktorje in evklidski algoritem. Slednje pa se uporablja pri reševanju Diofantovih enačb: iskanje GCD je potrebno za preverjanje enačbe glede možnosti razrešitve v celih številih.

Iskanje NOC

Najmanjši skupni večkratnik se določi tudi z zaporednim iskanjem ali razgradnjo na nedeljive faktorje. Poleg tega je enostavno najti LCM, če je največji delitelj že določen. Za števili X in Y sta LCM in GCD povezana z naslednjim razmerjem:

LCD(X,Y) = X × Y / GCD(X,Y).

Na primer, če je GCM(15,18) = 3, potem je LCM(15,18) = 15 × 18 / 3 = 90. Najbolj očiten primer uporabe LCM je iskanje skupnega imenovalca, ki je najmanjši skupni večkratnik dani ulomki.

Kopraštevila

Če par števil nima skupnih deliteljev, se tak par imenuje soprost. Gcd za take pare je vedno enaka ena, na podlagi povezave med delitelji in večkratniki pa je gcd za pare sopraprostih enak njihovemu produktu. Na primer, števili 25 in 28 sta relativno praštevili, ker nimata skupnih deliteljev, LCM(25, 28) = 700, kar ustreza njunemu produktu. Kateri koli dve nedeljivi števili bosta vedno relativno praštevili.

Skupni delitelj in večkratni kalkulator

Z našim kalkulatorjem lahko izračunate GCD in LCM za poljubno število števil, med katerimi lahko izbirate. Naloge za izračun skupnih deliteljev in večkratnikov najdemo v aritmetiki 5. in 6. razreda, vendar sta GCD in LCM ključna pojma v matematiki in se uporabljata v teoriji števil, planimetriji in komunikativni algebri.

Primeri iz resničnega življenja

Skupni imenovalec ulomkov

Najmanjši skupni večkratnik se uporablja pri iskanju skupnega imenovalca več ulomkov. Recimo, da morate v aritmetičnem problemu sešteti 5 ulomkov:

1/8 + 1/9 + 1/12 + 1/15 + 1/18.

Če želite dodati ulomke, je treba izraz reducirati na skupni imenovalec, kar se zmanjša na problem iskanja LCM. Če želite to narediti, izberite 5 številk v kalkulatorju in vnesite vrednosti imenovalcev v ustrezne celice. Program bo izračunal LCM (8, 9, 12, 15, 18) = 360. Zdaj morate za vsak ulomek izračunati dodatne faktorje, ki so definirani kot razmerje med LCM in imenovalcem. Torej bi dodatni množitelji izgledali takole:

  • 360/8 = 45
  • 360/9 = 40
  • 360/12 = 30
  • 360/15 = 24
  • 360/18 = 20.

Po tem pomnožimo vse ulomke z ustreznim dodatnim faktorjem in dobimo:

45/360 + 40/360 + 30/360 + 24/360 + 20/360.

Takšne ulomke zlahka seštejemo in dobimo rezultat 159/360. Ulomek zmanjšamo za 3 in vidimo končni odgovor - 53/120.

Reševanje linearnih Diofantovih enačb

Linearne Diofantove enačbe so izrazi oblike ax + by = d. Če je razmerje d / gcd(a, b) celo število, potem je enačba rešljiva v celih številih. Preverimo nekaj enačb, da vidimo, ali imajo celoštevilsko rešitev. Najprej preverimo enačbo 150x + 8y = 37. S pomočjo kalkulatorja najdemo GCD (150,8) = 2. Razdelimo 37/2 = 18,5. Število ni celo število, zato enačba nima celih korenov.

Preverimo enačbo 1320x + 1760y = 10120. S kalkulatorjem poiščite GCD(1320, 1760) = 440. Delite 10120/440 = 23. Kot rezultat dobimo celo število, zato je Diofantova enačba rešljiva v celih koeficientih .

Zaključek

GCD in LCM igrata veliko vlogo v teoriji števil, koncepta sama pa se pogosto uporabljata na najrazličnejših področjih matematike. Uporabite naš kalkulator za izračun največjih deliteljev in najmanjših večkratnikov poljubnega števila števil.

Najmanjši skupni večkratnik dveh števil je neposredno povezan z največjim skupnim deliteljem teh števil. to povezava med GCD in NOC je določen z naslednjim izrekom.

Izrek.

Najmanjši skupni večkratnik dveh pozitivnih celih števil a in b je enak produktu a in b, deljenemu z največjim skupnim deliteljem a in b, to je LCM(a, b)=a b:NOT(a, b).

Dokaz.

Naj M je nekaj večkratnika števil a in b. To pomeni, da je M deljiv z a in po definiciji deljivosti obstaja neko celo število k, tako da velja enakost M=a·k. Toda M je tudi deljiv z b, potem je a·k deljiv z b.

Označimo gcd(a, b) kot d. Potem lahko zapišemo enakosti a=a 1 ·d in b=b 1 ·d, a 1 =a:d in b 1 =b:d pa bosta relativno praštevili. Posledično lahko pogoj, dobljen v prejšnjem odstavku, da je a · k deljiv z b, preoblikujemo takole: a 1 · d · k je deljeno z b 1 · d , kar je zaradi lastnosti deljivosti enakovredno pogoj, da je a 1 · k deljivo z b 1.

Zapisati morate tudi dve pomembni posledici obravnavanega izreka.

    Skupni večkratniki dveh števil so enaki večkratnikom njunega najmanjšega skupnega večkratnika.

    To je res tako, saj je vsak skupni večkratnik M števil a in b določen z enakostjo M=LMK(a, b)·t za neko celo vrednost t.

    Najmanjši skupni večkratnik medsebojno praštevila a in b je enak njunemu zmnožku.

    Utemeljitev tega dejstva je povsem očitna. Ker sta a in b relativno praštevilna, potem je gcd(a, b)=1, torej GCD(a, b)=a b: GCD(a, b)=a b:1=a b.

Najmanjši skupni večkratnik treh ali več števil

Iskanje najmanjšega skupnega večkratnika treh ali več števil se lahko zmanjša na zaporedno iskanje LCM dveh števil. Kako se to naredi, je prikazano v naslednjem izreku 1 , a 2 , …, a k sovpadajo s skupnimi večkratniki števil m k-1 in a k torej sovpadajo s skupnimi večkratniki števila m k . In ker je najmanjši pozitivni večkratnik števila m k samo število m k, potem je najmanjši skupni večkratnik števil a 1, a 2, ..., a k m k.

Reference.

  • Vilenkin N.Y. in drugi. 6. razred: učbenik za splošnoizobraževalne ustanove.
  • Vinogradov I.M. Osnove teorije števil.
  • Mikhelovich Sh.H. Teorija števil.
  • Kulikov L.Ya. in drugi Zbirka nalog iz algebre in teorije števil: Učbenik za študente fizike in matematike. specialnosti pedagoških zavodov.