Регуляция дыхания. Функциональная система кислородного снабжения организма

Легкие находятся в грудной полости. Движения мышц, которые изменяют объем этой полости, вызывают движение воздуха в легкие и из легких, попеременно увеличивая или уменьшая объем грудной клетки. Это обусловливается ритмическими сокращениями дыхательных мышц, вследствие чего и осуществляются вдох и выдох - поступление и удаление из легких воздуха, их вентиляция.

При вдохе межреберные мышцы приподнимают ребра, а диафрагма, сокращаясь, становится менее выпуклой, в результате объем грудной клетки увеличивается, легкие расширяются, давление воздуха в них становится ниже атмосферного и воздух устремляется в легкие - происходит спокойный вдох. При глубоком вдохе, кроме наружных межреберных мышц и диафрагмы, одновременно сокращаются мышцы груди и плечевого пояса.

При выдохе межреберные мышцы и диафрагма расслабляются, ребра опускаются, выпуклость диафрагмы увеличивается, в результате объем грудной клетки уменьшается, легкие сжимаются, давление в них становится выше атмосферного и воздух устремляется из легких - происходит спокойный выдох. Глубокий выдох обусловлен сокращением внутренних межреберных и брюшных мышц.

Таким образом, ритмичное увеличение или уменьшение объема грудной полости действует как механический насос, нагнетающий воздух в легкие и выталкивающий его из них.

Скорость и сила дыхательных движений чрезвычайно тонко регулируется нервной системой на протяжении всей жизни человека: с момента его рождения и до самой смерти. Согласованность, координация, ритмичность сокращений и расслаблений дыхательных мышц обусловливаются поступающими к ним по нервам импульсам от дыхательного центра продолговатого мозга.

И. М. Сеченов в 1882 г. установил, что примерно через каждые 4 секунды в дыхательном центре автоматически возникают возбуждения, обеспечивающие чередование вдоха и выдоха. Дыхательный центр не только регулирует ритмичное чередование вдоха и выдоха, но и способен изменять частоту и глубину дыхательных движений, приспосабливая легочную вентиляцию к потребностям организма, обеспечивая тем самым оптимальное содержание газов в крови.

Нервные механизмы саморегуляции дыхания проявляются в том, что вдох рефлекторно вызывает выдох, а выдох - вдох. Это происходит потому, что во время вдоха при растяжении легочной ткани в нервных рецепторах, находящихся в ней, возникает возбуждение, которое передается продолговатому мозгу и вызывает активацию центра выдоха и торможение центра вдоха, образующих дыхательный центр.

Сокращение дыхательных мышц прекращается, они расслабляются, и происходит выдох. При выдохе поток импульсов от рецепторов прекращается, центр выдоха перестает активизироваться, центр вдоха растормаживается, активизируется и наступает вдох.

Гуморальная регуляция дыхания состоит в том, что повышение концентрации углекислого газа в крови возбуждает дыхательный центр - частота и глубина дыхания увеличиваются. Уменьшение содержания углекислого газа в крови понижает возбудимость дыхательного центра - частота и глубина дыхания уменьшаются.

Дыхание очень тесно связано с кровообращением. Увеличение скорости дыхания может способствовать циркуляции крови. Чем глубже вдох, тем больше снижается давление в грудной полости. Это падение давления не только нагнетает воздух в легкие, но и заставляет оттекать к сердцу кровь из вен, расположенных в различных частях тела. Если долго неподвижно сидеть или стоять, это может вызвать глубокий и непроизвольный вздох, заставляющий притекать к сердцу большие количества крови и, таким образом, способствующий циркуляции крови.

Формой дыхательной деятельности являются чихание и кашель. Они регулируются защитными дыхательными рефлексами.

Чихание - это сильный и очень быстрый рефлекторный выдох через ноздри, возникающий в результате раздражения рецепторов слизистой оболочки носовой полости. Во время чихания удаляются вещества, которые раздражают (пыль, вещества с резким запахом и т. д.).

Кашель - резкий рефлекторный выдох через рот, возникающий в результате раздражения рецепторов гортани.

Жизненная емкость легких состоит из дыхательного объема, резервного объема вдоха и резервного объема выдоха. Дыхательным объемом называется количество воздуха, поступающего в легкие при одном вдохе. В покое он равен примерно 0,5 л и соответствует объему выдыхаемого воздуха при одном выдохе. Если после спокойного вдоха сделать усиленный дополнительный вдох, то в легкие может поступить еще 1.5 л (1500 см 3) воздуха, который и составляет резервный объем вдоха. После спокойного выдоха можно при максимальном напряжении выдохнуть еще 1.5 л воздуха. Это количество называют резервным объемам выдоха.

Таким образом, дыхательный объем (0,5 л) + резервный объем вдоха (1,5 л) + резервный объем выдоха (1,5 л) и составляют жизненную емкость легких. Ее показатели колеблются от 3,5 л до 4,8 л у мужчин и от 3,0 л до 3,5 л — у женщин.

Наибольшее количество воздуха, которое человек может выдохнуть после самого глубокого вдоха, называется жизненной емкостью легких.

У физически здоровых тренированных людей жизненная емкость легких достигает 6,0-7,0 л. Измеряется жизненная емкость с помощью прибора спирометра.

Искусственное дыхание

Искусственное дыхание применяется при оказании первой помощи утопленникам, при поражении электрическим током, молнией, отравлении угарным газом и других несчастных случаях. Искусственное дыхание позволяет возобновить деятельность дыхательного центра и спасти человека от смерти. Для этого необходимо обеспечить проходимость дыхательных путем, очистив рот и глотку от инородных тел.

Например, спасая утопленника, прежде всего, нужно удалить воду из его дыхательных воздухоносных путей. Для этого спасатель, стоя на одном колене, укладывает пострадавшего себе на бедро так, чтобы его голова и верхняя часть туловища свисали вниз. Далее открывают рот тонувшему и, похлопывая его по спине, удаляют воду из дыхательных путей.

Затем пострадавшего нужно уложить на спину, на твердую горизонтальную поверхность, освободить от давящих частей одежды и произвести искусственное дыхание, которое лучше всего делать вдвоем.

Есть несколько способов искусственного дыхания:

  1. в положении на спине
  2. в положении на животе
  3. изо «рта в рот»

Вдувание производится с интервалом в 4–5 с, то есть 12–16 раз в минуту. Продолжительность выдоха должна быть больше вдоха в два раза. Одновременно с искусственным дыханием проводят массаж сердца, в случае его остановки.

Для этого массирующий кладет ладонь на нижнюю треть грудины, другую ладонь располагает сверху под прямым углом, производит толчкообразные надавливания на грудину. Темп массажа - 60 нажатий в минуту у взрослого, 70–80 - у детей до 12 лет.

Регуляция дыхательных движений

Нервная регуляция

Дыхательный центр (центр вдоха и выдоха) находится в продолговатом отделе головного мозга. Работа Дыхательного центра зависит от болевых и температурных воздействий, а также артериального давления, лекарственных средств и других факторов.

Кора больших полушарий головного мозга позволяет произвольно задерживать, изменять ритм и глубину дыхания.

Гуморальная регуляция

При увеличении в крови концентрации углекислого газа (СО г) возбудимость дыхательного центра повышается - дыхание учащается. При уменьшении концентрации С0 2 возбудимость дыхательного центра снижается.

Внешнее дыхание - одна из важнейших функций организма. Остановка дыхания приводит верную смерть уже через 3-5 мин. Количество кислорода в организме незначительна, поэтому важно, чтобы он постоянно поступал через систему внешнего дыхания. Этим объясняется формирование в процессе эволюции такого механизма регуляции, который бы обеспечил высокую надежность дыхания. В основе регуляциГ дыхания лежит поддержка константного уровня-таких показателей организма, как Рсо8, Ро? и рН. Основным принципом регуляции е саморегуляция, при которой отклонение этих параметров от нормального уровня немедленно вызывает ряд процессов, направленных на их восстановление. В системе регуляции дыхания можно выделить внутренние и внешние звенья саморегуляции. Внутренние звенья связаны с состоянием крови (буферные свойства, содержание гемоглобина) и сердечно-сосудистой системы, внешние - с механизмами внешнего дыхания. Изменяемыми параметрами системы регуляции внешнего дыхания является глубина и частота дыхательных движений. Основным регулируемым объектом являются дыхательные мышцы, которые относятся к скелетных мышц. Кроме них, к объекту регуляции дыхания должны быть зачислены гладкие мышцы глотки, трахеи и бронхов, которые влияют на состояние дыхательных путей. Транспорт газов кровью и газообмен в тканях осуществляет сердечно-сосудистая система, о регуляции функций которой речь пойдет в соответствующих разделах. Дыхание регулируется главным образом рефлекторным путем, который включает в себя 3 элемента: 1) рецепторы, воспринимающие информацию и афферентные пути, которые передают Ее нервным центрам, 2) нервные центры, 3) эффекторы - пути передачи команд от центров и собственно исполнительные элементы.

Непроизвольную регуляцию дыхания осуществляет дыхательный центр, находящийся в продолговатом мозге (одном из отделов заднего мозга) . Вентральная (нижняя) часть дыхательного центра ответственна за стимуляцию вдоха; ее называют центром вдоха (инспнра-торным центром) . Стимуляция этого центра увеличивает частоту и глубину вдоха. Дорсальная (верхняя) часть и обе латеральные (боковые) тормозят вдох и стимулируют выдох; они носят собирательное название центра выдоха (экспираторного центра) . Дыхательный центр связан с межреберными мышцами межреберными нервами, а с диафрагмой - диафрагмальными. Бронхиальное дерево (совокупность бронхов и бронхиол) иннервируется блуждающим нервом. Ритмично повторяющиеся нервные импульсы, направляющиеся к диафрагме и межреберным мышцам обеспечивают осуществление вентиляционных движений. Расширение легких при вдохе стимулирует находящиеся в бронхиальном дереве рецепторы растяжения (проприоцепторы) и они посылают через блуждающий нерв все больше и больше импульсов в экспираторный центр. Это на время подавляет инспираторный центр и вдох. Наружные межреберные мышцы теперь расслабляются, эластично сокращается растянутая легочная ткань - происходит выдох. После выдоха рецепторы растяжения в бронхиальном дереве более уже не подвергаются стимуляции. Поэтому экспираторный центр отключается и вдох может начаться снова. Весь этот цикл непрерывно и ритмично повторяется на протяжении всей жизни организма. Форсированное дыхание осуществляется при участии внутренних межреберных мышц. Основной ритм дыхания поддерживается дыхательным центром продолговатого мозга, даже если все входящие в него нервы перерезаны. Однако в обычных условиях на этот основной ритм накладываются различные влияния. Главным фактором, регулирующим частоту дыхания, служит не концентрация кислорода в крови, а концентрация С02. Когда уровень С02 повышается (например, при физической нагрузке) , имеющиеся в кровеносной системе хеморецепторы каротидных и аортальных телец посылают нервные импульсы в инспираторный центр. В самом продолговатом мозге также имеются хеморецепторы. От инспираторного центра через диафрагмальные и межреберные нервы поступают импульсы в диафрагму и наружные межреберные мышцы, что ведет к их более частому сокращению, а следовательно, к увеличению частоты дыхания. Накапливающийся в организме С02 может причинить большой вред организму. При соединении С02 с водой образуется кислота, способная вызвать денатурацию ферментов и других белков. Поэтому в процессе эволюции у организмов выработалась очень быстрая реакция на любое повышение концентрации С02. Если концентрация С02 в воздухе увеличивается на 0,25%, то легочная вентиляция удваивается. Чтобы вызвать такой же результат, концентрация кислорода в воздухе должна снизиться с 20% до 5%. Концентрация кислорода тоже влияет на дыхание, однако в обычных условиях кислорода всегда бывает достаточно, и потому его влияние относительно невелико. Хеморецепторы, реагирующие на концентрацию кислорода, располагаются в продолговатом мозге, в каротидных и аортальных тельцах, так же, как и рецепторы С02. В известных пределах частота и глубина дыхания могут регулироваться произвольно, о чем свидетельствует, например, наша способность «затаить дыхание» . К произвольной регуляции дыхания мы прибегаем при форсированном дыхании, при разговоре, пении, чихании и кашле.

Регуляция дыхания

Потребность организма в кислороде во время покоя и при работе неодинакова; поэтому частота и глубина дыхания должны автоматически изменяться, приспосабливаясь к изменяющимся условиям. Во время мышечной работы потребление кислорода мышцами и другими тканями может возрасти в 4-5 раз.

Для осуществления дыхания необходимо согласованное сокращение множества отдельных мышц; эту координацию осуществляет дыхательный центр - специальная группа клеток, лежащая в одном из отделов головного мозга, называемом продолговатым мозгом. Из этого центра к диафрагме и межреберным мышцам ритмически посылаются залпы импульсов, вызывающие регулярное и координированное сокращение соответствующих мышц каждые 4-5 сек. При обычных условиях дыхательные движения совершаются автоматически, без контроля со стороны нашей воли. Но когда нервы, идущие к диафрагме (диафрагмальные нервы) и межреберным мышцам, перерезаны или повреждены (например, при детском параличе), дыхательные движения тотчас прекращаются. Конечно, человек может произвольно изменять частоту и глубину дыхания; он может даже некоторое время совсем не дышать, но он не в состоянии задержать дыхание на такое длительное время, чтобы это причинило сколько-нибудь существенный вред: автоматический механизм вступает в действие и вызывает вдох.

Естественно возникает вопрос: почему дыхательный центр периодически посылает залпы импульсов? С помощью ряда экспериментов было установлено, что если связи дыхательного центра со всеми другими частями головного мозга прерваны, т. е. если перерезаны чувствительные нервы и пути, идущие от высших мозговых центров, то дыхательный центр посылает непрерывный поток импульсов и мышцы, участвующие в дыхании, сократившись, остаются в сокращенном состоянии. Таким образом, дыхательный центр, предоставленный самому себе, вызывает полное сокращение мышц, участвующих в дыхании. Если, однако, либо чувствительные нервы, либо пути, идущие от высших мозговых центров, остались неповрежденными, то дыхательные движения продолжают совершаться нормально. Это означает, что для нормального дыхания необходимо периодическое торможение дыхательного центра, с тем чтобы он прекращал посылку импульсов, вызывающих сокращение мышц. Дальнейшие эксперименты показали, что пневмаксический центр, лежащий в среднем мозгу (фиг.:,268), вместе с дыхательным центром образуют «реверберирующий круговой путь», который и служит основой регулирования частоты дыхания. Кроме того, растяжение стенок альвеол во время вдоха стимулирует находящиеся в этих стенках чувствительные к давлению нервные клетки, и эти клетки посылают в головной мозг импульсы, тормозящие дыхательный центр, что приводит к выдоху.

Дыхательный центр стимулируют или тормозят также импульсы, приходящие к нему по многим другим нервным путям. Сильная боль в любой части тела вызывает рефлекторное учащение дыхания. Кроме того, в слизистой оболочке гортани и глотки имеются рецепторы, которые при их раздражении посылают в дыхательный центр импульсы, тормозящие дыхание. Это важные защитные приспособления. Когда какой-либо раздражающий газ, например аммиак или пары сильных кислот, входит в дыхательные пути, он стимулирует рецепторы гортани, которые посылают в дыхательный центр тормозящие импульсы, и у нас невольно «перехватывает дыхание»; благодаря этому вредное вещество не проникает в легкие. Точно так же, когда в гортань случайно попадает пища, она раздражает рецепторы в слизистой оболочке этого органа, заставляя их посылать тормозные импульсы в дыхательный центр. Дыхание мгновенно приостанавливается, и пища не входит в легкие, где она могла бы повредить нежный эпителий.

Во время мышечной работы частота и глубина дыхания должны возрастать, чтобы удовлетворить повышенную потребность организма в кислороде и предупредить накопление углекислоты. Концентрация углекислоты в крови служит главным фактором, регулирующим дыхание. Повышенное содержание углекислоты в крови, притекающей к головному мозгу, увеличивает возбудимость как дыхательного, так и пневмотаксического центра. Повышение активности первого из них ведет к усиленному сокращению дыхательной мускулатуры, а второго - к учащению дыхания. Когда концентрация углекислоты возвращается к норме, стимуляция этих центров прекращается и частота и глубина дыхания возвращаются к обычному уровню.

Этот механизм действует и в обратном направлении. Если человек произвольно сделает ряд глубоких вдохов и выдохов, содержание углекислоты в альвеолярном воздухе и в крови понизится настолько, что после того, как он перестанет глубоко дышать, дыхательные движения вовсе прекратятся до тех пор, пока уровень углекислоты в крови снова не достигнет нормального. Первый вдох новорожденного младенца вызывается главным образом действием этого механизма. Тотчас после рождения ребенка и отделения его от плаценты содержание углекислоты в его крови начинает повышаться и заставляет дыхательный центр посылать импульсы к диафрагме и межреберным мышцам, которые сокращаются и производят первый вдох. Иногда, когда первый вдох новорожденного младенца задерживается, в его легкие вдувают воздух, содержащий 10% углекислоты, чтобы привести этот механизм в действие.

Опыты показали, что главным фактором, стимулирующим дыхательный центр, служит не столько уменьшение количества кислорода, сколько увеличение количества углекислоты в крови. Если человека поместить в небольшую герметически закрытую камеру, так что ему придется дышать все время одним и тем же воздухом, содержание кислорода в воздухе будет постепенно убывать. Если в камеру поместить, кроме того, химическое вещество, способное быстро поглощать выделяемую углекислоту, с тем чтобы количество ее в легких и в крови не увеличивалось, то частота дыхания возрастет лишь незначительно, даже если эксперимент продолжать до тех пор, пока содержание кислорода не понизится очень сильно. Если же не удалять углекислоту, а позволить ей накапливаться, то дыхание резко участится и у человека возникнут неприятные ощущения и чувство удушья. Когда человеку дают дышать воздухом с нормальным количеством кислорода, но с повышенным содержанием углекислоты, опять-таки наблюдается учащение дыхания. Очевидно, дыхательный центр стимулируется не нехваткой кислорода, а главным образом накоплением углекислоты.

Для большей надежности осуществления надлежащей реакции на изменения концентрации в крови углекислоты и кислорода выработался еще один регулирующий механизм. У основания каждой из внутренних сонных артерий (arteria carotid) находится небольшое вздутие, называемое каротидным синусом, которое содержит рецепторы, чувствительные к изменениям химического состава крови. При повышении уровня углекислоты или понижении уровня кислорода эти рецепторы посылают нервные импульсы в дыхательный центр в продолговатом мозгу и повышают его активность.

Влияние тренировки. Упражнения и практика при спортивной тренировке повышают способность организма к выполнению той или иной задачи. Во-первых, мышцы при тренировке увеличиваются в размерах и становятся сильнее (вследствие роста отдельных мышечных волокон, а не увеличения их числа). Во-вторых, при многократном выполнении того или иного действия человек научается координировать работу мышц и сокращать каждую из них ровно с такой силой, с какой это необходимо для достижения желаемого результата, что ведет к экономии энергии. В-третьих, при этом происходят изменения в сердечно-сосудистой и дыхательной системах. Сердце тренированного физкультурника несколько увеличено и в покое сокращается медленнее. Во время мышечной работы оно перекачивает больший объем крови, причем не столько за счет учащения сокращений, сколько за счет большей силы каждого сокращения. Кроме того, атлет дышит медленнее и глубже, чем обычный человек, и при физической нагрузке количество проходящего через легкие воздуха у него повышается главным образом не за счет учащения дыхания, а за счет увеличения его глубины. Это более эффективный способ достижения той же цели

В соответствии с метаболическими потребностями дыхательная система обеспечивает газообмен О2 и СО2 между окружающей средой и организмом. Эту жизненно важную функцию регулирует сеть многочисленных взаимосвязанных нейронов ЦНС, расположенных в нескольких отделах мозга и объединяемых в комплексное понятие "дыхательный центр" . При воздействии на его структуры нервных и гуморальных стимулов происходит приспособление функции дыхания к меняющимся условиям внешней среды. Структуры, необходимые для возникновения дыхательного ритма, впервые были обнаружены в продолговатом мозге. Перерезка продолговатого мозга в области дна IV желудочка приводит к прекращению дыхания. Поэтому под главным дыхательным центром понимают совокупность нейронов специфических дыхательных ядер продолговатого мозга.

Дыхательный центр управляет двумя основными функциями: двигательной , которая проявляется в виде сокращения дыхательных мышц, и гомеостатической , связанной с поддержанием постоянства внутренней среды организма при сдвигах в ней содержания 02 и СО2. Двигательная, или моторная, функция дыхательного центра заключается в генерации дыхательного ритма и его паттерна. Благодаря этой функции осуществляется интеграция дыхания с другими функциями. Под паттерном дыхания следует иметь в виду длительность вдоха и выдоха, величину дыхательного объема, минутного объема дыхания. Гомеостатическая функция дыхательного центра поддерживает стабильные величины дыхательных газов в крови и внеклеточной жидкости мозга, адаптирует дыхательную функцию к условиям измененной газовой среды и другим факторам среды обитания.

Локализация и функциональные свойства дыхательных нейронов

В передних рогах спинного мозга на уровне С3 - С5 располагаются мотонейроны, образующие диафрагмальный нерв. Мотонейроны, иннервирующие межреберные мышцы, находятся в передних рогах на уровнях Т2 - Т10 (Т2 - Т6 - мотонейроны инспираторных мышц, T8-T10 - экспираторных). Установлено, что одни мотонейроны регулируют преимущественно дыхательную, а другие - преимущественно познотоническую активность межреберных мышц.

Нейроны бульбарного дыхательного центра располагаются на дне IV желудочка в медиальной части ретикулярной формации продолговатого мозга и образуют дорсальную и вентральную дыхательные группы. Дыхательные нейроны, активность которых вызывает инспирацию или экспирацию, называются соответственно инспираторными и экспираторными нейронами. Между группами нейронов, управляющими вдохом и выдохом, существуют реципрокные отношения. Возбуждение экспираторного центра сопровождается торможением в инспираторном центре и наоборот. Инспираторные и экспираторные нейроны, в свою очередь, делятся на "ранние" и "поздние". Каждый дыхательный цикл начинается с активизации "ранних" инспираторных нейронов, затем возбуждаются "поздние" инспираторные нейроны. Также последовательно возбуждаются "ранние" и "поздние" экспираторные нейроны, которые тормозят инспираторные нейроны и прекращают вдох. Современные исследования показали, что в продолговатом мозге нет четкого деления на инспираторный и экспираторный отделы, а есть скопления дыхательных нейронов с определенной функцией.

Спонтанная активность нейронов дыхательного центра начинает появляться к концу периода внутриутробного развития. Возбуждение дыхательного центра у плода появляется благодаря пейсмекерным свойствам сети дыхательных нейронов продолговатого мозга. По мере формирования синаптических связей дыхательного центра с различными отделами ЦНС пейсмекерный механизм дыхательной активности постепенно теряет свое физиологическое значение.

В варолиевом мосту находятся ядра дыхательных нейронов, образующих пневмотаксический центр. Считается, что дыхательные нейроны моста участвуют в механизме смены вдоха и выдоха и регулируют величину дыхательного объема. Дыхательные нейроны продолговатого мозга и варолиева моста связаны между собой восходящими и нисходящими нервными путями и функционируют согласованно. Получив импульсы от инспираторного центра продолговатого мозга, пневмотаксический центр посылает их к экспираторному центру продолговатого мозга, возбуждая последний. Инспираторные нейроны тормозятся. Разрушение мозга между продолговатым мозгом и мостом удлиняет фазу вдоха. Гипоталамические ядра координируют связь дыхания с кровообращением.

Определенные зоны коры больших полушарий осуществляют произвольную регуляцию дыхания в соответствии с особенностями влияния на организм факторов внешней среды и связанными с этим гомеостатическими сдвигами.

Таким образом, мы видим, что управление дыханием - сложнейший процесс, осуществляемый множеством нейронных структур. В процессе управления дыханием осуществляется четкая иерархия различных компонентов и структур дыхательного центра.

Рефлекторная регуляция дыхания

Нейроны дыхательного центра имеют связи с многочисленными механорецепторами дыхательных путей и альвеол легких и рецепторов сосудистых рефлексогенных зон. Благодаря этим связям осуществляется весьма многообразная, сложная и биологически важная рефлекторная регуляция дыхания и ее координация с другими функциями организма.

Различают несколько типов механорецепторов: медленно адаптирующиеся рецепторы растяжения легких, ирритантные быстро адаптирующиеся механорецепторы и J-рецепторы - "юкстакапиллярные" рецепторы легких.

Медленно адаптирующиеся рецепторы растяжения легких расположены в гладких мышцах трахеи и бронхов. Эти рецепторы возбуждаются при вдохе, импульсы от них по афферентным волокнам блуждающего нерва поступают в дыхательный центр. Под их влиянием тормозится активность инспираторных нейронов продолговатого мозга. Вдох прекращается, начинается выдох, при котором рецепторы растяжения неактивны. Рефлекс торможения вдоха при растяжении легких называется рефлексом Геринга - Брейера. Этот рефлекс контролирует глубину и частоту дыхания. Он является примером регуляции по принципу обратной связи. После перерезки блуждающих нервов дыхание становится редким и глубоким.

Ирритантные быстро адаптирующиеся механорецепторы, локализованные в слизистой оболочке трахеи и бронхов, возбуждаются при резких изменениях объема легких, при растяжении или спадении легких, при действии на слизистую трахеи и бронхов механических или химических раздражителей. Результатом раздражения ирритантных рецепторов является частое, поверхностное дыхание, кашлевой рефлекс, или рефлекс бронхоконстрикции.

J-рецепторы - "юкстакапиллярные" рецепторы легких находятся в интерстиции альвеол и дыхательных бронхов вблизи от капилляров. Импульсы от J-рецепторов при повышении давления в малом круге кровообращения, или увеличении объема интерстициальной жидкости в легких (отек легких), или эмболии мелких легочных сосудов, а также при действии биологически активных веществ (никотин, простагландины, гистамин) по медленным волокнам блуждающего нерва поступают в дыхательный центр - дыхание становится частым и поверхностным (одышка).

Важное биологическое значение, особенно в связи с ухудшением экологических условий и загрязнением атмосферы, имеют защитные дыхательные рефлексы - чихание и кашель.

Чихание. Раздражение рецепторов слизистой оболочки полости носа, например, пылевыми частицами или газообразными наркотическими веществами, табачным дымом, водой вызывает сужение бронхов, брадикардию, снижение сердечного выброса, сужение просвета сосудов кожи и мышц. Различные механические и химические раздражения слизистой оболочки носа вызывают глубокий сильный выдох - чихание, способствующее стремлению избавиться от раздражителя. Афферентным путем этого рефлекса является тройничный нерв.

Кашель возникает при раздражении механо- и хеморецепторов глотки, гортани, трахеи и бронхов. При этом после вдоха сильно сокращаются мышцы выдоха, резко повышается внутригрудное и внутрилегочное давление (до 200 мм рт. ст.), открывается голосовая щель, и воздух из дыхательных путей под большим напором высвобождается наружу и удаляет раздражающий агент. Кашлевой рефлекс является основным легочным рефлексом блуждающего нерва.

Рефлексы с проприорецепторов дыхательных мышц

От мышечных веретен и сухожильных рецепторов Гольджи, расположенных в межреберных мышцах и мышцах живота, импульсы поступают в соответствующие сегменты спинного мозга, затем в продолговатый мозг, центры головного мозга, контролирующие состояние скелетных мышц. В результате происходит регуляция силы сокращений в зависимости от исходной длины мышц и оказываемого им сопротивления дыхательной системы.

Рефлекторная регуляция дыхания осуществляется также периферическими и центральными хеморецепторами , что изложено в разделе гуморальной регуляции.

Гуморальная регуляция дыхания

Главным физиологическим стимулом дыхательных центров является двуокись углерода. Регуляция дыхания обусловливает поддержание нормального содержания СО2 в альвеолярном воздухе и артериальной крови. Возрастание содержания СО2 в альвеолярном воздухе на 0,17% вызывает удвоение МОД, а вот снижение О2 на 39-40% не вызывает существенных изменений МОД.

При повышении в замкнутых герметических кабинах концентрации СО2 до 5 - 8% у обследуемых наблюдалось увеличение легочной вентиляции в 7-8 раз. При этом концентрация СО2 в альвеолярном воздухе существенно не возрастала, так как основным признаком регуляции дыхания является необходимость регуляции объема легочной вентиляции, поддерживающей постоянство состава альвеолярного воздуха.

Деятельность дыхательного центра зависит от состава крови, поступающей в мозг по общим сонным артериям. В 1890 г. это было показано Фредериком в опытах с перекрестным кровообращением. У двух собак, находившихся под наркозом, перерезали и соединяли перекрестно сонные артерии и яремные вены. При этом голова первой собаки снабжалась кровью второй собаки и наоборот. Если у одной из собак, например у первой, перекрывали трахею и таким путем вызывали асфиксию, то гиперпноэ развивалось у второй собаки. У первой же собаки, несмотря на увеличение в артериальной крови напряжения СО2 и снижение напряжения 02, развивалось апноэ, так как в ее сонную артерию прступала кровь второй собаки, у которой в результате гипервентиляции снижалось напряжение СО2 в артериальной крови.

Двуокись углерода, водородные ионы и умеренная гипоксия вызывают усиление дыхания. Эти факторы усиливают деятельность дыхательного центра, оказывая влияние на периферические (артериальные) и центральные (модулярные) хеморецепторы, регулирующие дыхание.

Артериальные хеморецепторы находятся в каротидных синусах и дуге аорты. Они расположены в специальных тельцах, обильно снабжаемых артериальной кровью. Аортальные хеморецепторы на дыхание влияют слабо и большее значение имеют для регуляции кровообращения.

Артериальные хеморецепторы являются уникальными рецепторными образованиями, на которые гипоксия оказывает стимулирующее влияние. Афферентные влияния каротидных телец усиливаются также при повышении в артериальной крови напряжения двуокиси углерода и концентрации водородных ионов. Стимулирующее действие гипоксии и гиперкапнии на хеморецепторы взаимно усиливается, тогда как в условиях гипероксии чувствительность хеморецепторов к двуокиси углерода резко снижается. Артериальные хеморецепторы информируют дыхательный центр о напряжении 02 и СО2 в крови, направляющейся к мозгу.

После перерезки артериальных (периферических) хеморецепторов у подопытных животных исчезает чувствительность дыхательного центра к гипоксии, но полностью сохраняется реакция дыхания на гиперкапнию и ацидоз.

Центральные хеморецепторы расположены в продолговатом мозге латеральнее пирамид. Перфузия этой области мозга раствором со сниженным рН резко усиливает дыхание, а при высоком рН дыхание ослабевает, вплоть до апноэ. То же происходит при охлаждении или обработке этой поверхности продолговатого мозга анестетиками. Центральные хеморецепторы, оказывая сильное влияние на деятельность дыхательного центра, существенно изменяют вентиляцию легких. Установлено, что снижение рН спинномозговой жидкости всего на 0,01 сопровождается увеличением легочной вентиляции на 4 л/мин.

Центральные хеморецепторы реагируют на изменение напряжения СО2 в артериальной крови позже, чем периферические хеморецепторы, так как для диффузии СО^ из крови в спинномозговую жидкость и далее в ткань мозга необходимо больше времени. Гиперкапния и ацидоз стимулируют, а гипокапния и алкалоз - тормозят центральные хеморецепторы.

Для определения чувствительности центральных хеморецепторов к изменению рН внеклеточной жидкости мозга, изучения синергизма и антагонизма дыхательных газов, взаимодействия системы дыхания и сердечно-сосудистой системы используют метод возвратного дыхания. При дыхании в замкнутой системе выдыхаемый СОд вызывает линейное увеличение концентрации СО^ и одновременно повышается концентрация водородных ионов в крови, а также во внеклеточной жидкости мозга.

Совокупность дыхательных нейронов следовало бы рассматривать как созвездие структур, осуществляющих центральный механизм дыхания. Таким образом, вместо термина "дыхательный центр" правильнее говорить о системе центральной регуляции дыхания, которая включает в себя структуры коры головного мозга, определенные зоны и ядра промежуточного, среднего, продолговатого мозга, варолиева моста, нейроны шейного и грудного отделов спинного мозга, центральные и периферические хеморецепторы, а также механорецепторы органов дыхания.

Своеобразие функции внешнего дыхания состоит в том, что она одновременно и автоматическая, и произвольно управляемая.

В продолговатом мозге расположен дыхательный центр. Он представляет собой совокупность групп нейронов, аксоны которых идут к мотонейронам спинного мозга, иннервирующим межреберные мышцы и мышцы диафрагмы. При периодическом возбуждении так называемых инспираторных нейронов (отвечающих за вдох) возбуждение достигает дыхательных мышц, они сокращаются, и происходит вдох. При вдохе легкие растягиваются, и возбуждаются механические рецепторы, расположенные в их стенках. От них импульсы поступают в продолговатый мозг, и активность инспираторных нейронов резко тормозится. Происходит выдох. Стенки легких расслабляются, возбуждение механических рецепторов прекращается, возобновляется возбуждение инспираторных нейронов, и начинается следующий дыхательный цикл. Для того чтобы произошел глубокий выдох, необходимо возбуждение экспираторных нейронов дыхательного центра, которые вызывают сокращение мышц, приводящих к уменьшению объема грудной клетки.

Дыхательный центр обладает автоматией и возбуждается периодически, в среднем 15 раз в минуту. При физических и эмоциональных нагрузках частота дыхания резко возрастает, чтобы обеспечить возросшие потребности организма в кислороде и, соответственно, удаление увеличенных количеств СO 2 Во многих зонах сосудистого русла расположены рецепторы, возбуждающиеся при повышении содержания СO 2 в крови. От этих рецепторов импульсы следуют в инспираторную часть дыхательного центра, стимулируя вдох. Кроме того, сами нейроны дыхательного центра очень чувствительны к увеличению концентрации углекислого газа в крови и реагируют на него учащением дыхания.

Человек способен произвольно задерживать или учащать дыхание, менять его глубину. Это возможно потому, что деятельность дыхательного центра продолговатого мозга находится под контролем высших отделов мозга, в частности коры больших полушарий. На активность дыхательного центра влияет также целый ряд гормонов, а также состояние других систем организма. При вдыхании паров веществ, раздражающих рецепторы слизистой оболочки дыхательных путей (хлор, аммиак), происходят мгновенный рефлекторный спазм голосовой щели, бронхов и задержка дыхания. К защитным рефлексам следует отнести также короткие резкие выдохи - чихание, возникающее при раздражении рецепторов носа и носоглотки, и кашель, возникающий при раздражении рецепторов гортани, трахеи, бронхов. При чихании и кашле из дыхательных путей удаляются инородные частицы, слизь и т. п.

Дыхание регулируется: 1) нервно-гуморально благодаря возбуждению нейронов дыхательного центра продолговатого мозга колебаниями химического состава притекающей к ним крови; 2) рефлекторно благодаря притоку афферентных импульсов в дыхательный центр продолговатого мозга.

Дыхательный центр вызывает сокращения дыхательной мускулатуры и после перерезки блуждающих нервов, т. е. после выключения рефлекторной саморегуляции дыхания.

Это происходит благодаря тому, что дыхательный центр одновременно возбуждается не только рефлекторно, но и изменением химического состава притекающей к нему крови. Можно отрезать все афферентные нервы, а деятельность дыхательного центра не прекратится. Это объясняется тем, что важнейший возбудитель дыхательного центра - внутренний, автоматический, главным образом углекислота, накапливающаяся в крови, а также повышение концентрации водородных ионов при накоплении других кислот.

Дыхательный центр у детей легко возбудим. Дыхание у них Значительно учащается при психических возбуждениях, небольших физических упражнениях, незначительном, повышении температуры тела и окружающей среды.

Рефлексы саморегуляции дыхания

В легких, плевре, грудных и брюшных мышцах имеются окончания афферентных нервных волокон (рецепторы), которые возбуждаются во время вдоха и усиленного выдоха. Возбуждение, возникающее в этих рецепторах, направляется в дыхательный центр продолговатого мозга по афферентным нервным волокнам, проходящим в составе блуждающих и симпатических нервов (из легких и плевры) и по афферентным волокнам двигательных нервов (из скелетных мышц).

В легких имеются механически раздражаемые рецепторы (мехаиорецепторы), которые делятся на: медленно адаптирующиеся, т. е. приспособляющиеся к раздражению, рецепторы растяжения, расположенные в глубине легких, в стенках крупных бронхом и в трахее; быстро адаптирующиеся рецепторы растяжения н спадения легких, находящиеся в глубине легких и в слизистой Оболочке бронхов, и рецепторы промежуточной легочных альвеол.

Медленно адаптирующиеся рецепторы составляют примерно 2/3, они возбуждаются при вдохе. Частота импульсов возбуждения раина 40-100 в 1 секунду и зависит от объема вдыхаемого воздуха и в малой степени от его состава. При увеличении объема легких мне частота импульсов возрастает. Афферентные импульсы передаются по толстым волокнам блуждающих нервов.

Быстро адаптирующиеся рецепторы составляют около 1/3, на раздувание легких они реагируют короткой, быстро исчезающей группой импульсов, передаваемых по тонким волокнам блуждающих нервов. Рецепторов спадения легких очень мало и они возбуждаются при нормальном выдохе только при сильном их спадении. Быстро адаптирующиеся рецепторы растяжения, спадения и слизистой бронхов идентичны. Они названы ирритантными .

Рецепторы трахеи и крупных бронхов отвечают на слабые механические раздражения. Благодаря поступлению афферентных импульсов из легких, плевры и из рецепторов мышц в дыхательный центр из последнего направляются эфферентные импульсы в спиной мозг к ядрам двигательных нервов дыхательных мышц, которые вызывают их сокращение.

Во время вдоха, когда легкие в достаточной степени растягиваются, возникает механическое раздражение рецепторов в легких и плевре, которое рефлекторно прекращает сокращение дыхательных мышц, участвующих в акте вдоха.

Рефлекторное торможение вдыхательных мышц при увеличении объема легких, уменьшение частоты и силы их сокращений вызывается усилением раздражения медленно адаптирующихся рецепторов. Интенсивность торможения пропорциональна увеличению растяжения легких до полной остановки вдоха. При этом рефлекторно снижается также тонус гладких мышц трахеи и бронхов. При усилении раздувания легких появляется кратковременное, в пределах секунды, возбуждение вдыхательных мышц.

Наоборот, при выдохе, когда легкие достигли изв’естной степени расслабления, раздражение рецепторов в легких и плевре вызывает рефлекторно сокращение вдыхательных мышц. Это сокращение вдыхательных мышц при спадении легких вызывается раздражением быстро адаптирующихся рецепторов. Рецепторы диафрагмы в обычных условиях почти не участвуют в регуляции дыхания. При расширении грудной клетки во время вдоха раздражаются рецепторы кожи, покрывающей грудную клетку, межреберных мышц и мышц брюшной стенки, в которых особенно много рецепторов, что рефлекторно усиливает сокращение вдыхательных мышц. Однако сильное раздражение этих рецепторов при значительном расширении грудной клетки тормозит сокращения вдыхательных мышц.

Следовательно, вдох рефлекторно регулирует выдох, а выдох регулирует вдох (теория Геринга - Брейера).

Рефлекторная саморегуляция дыхания имеет защитное значение, так как она препятствует чрезмерному растяжению легких при вдохе. Афферентные импульсы из легких и плевры, поступающие по блуждающим нервам во время вдоха, вызывают торможение вдыхательного центра. Такое же торможение вдыхательного центра вызывают афферентные импульсы из идыхательных мышц.

При перерезке обоих блуждающих нервов дыхание сохраняется, но оно становится более глубоким и редким. Углубление дыхания после перерезки блуждающих нервов происходит благодаря тому, что прерываются афферентные волокна, вызывающие торможение дыхательного центра.

Раздражение центрального конца перерезанного блуждающего нерва во время вдоха вызывает угнетение вдыхательных движений и задержку дыхания на выдохе.

Ещё более резкое торможение вдоха вызывает раздражение астрального конца верхнего гортанного нерва. При раздражении этого нерва после остановки дыхания получается глубокий выдох, с которым следует усиленное сокращение выдыхательных мышц.

Шейный симпатический нерв наоборот, повышает возбудимость дыхательного центра. Раздражение головного конца этого нерва вызывает учащение и усиление дыхательных движений.

Проходящий через гортань и трахею, раздражает окончания языкоглоточного и гортанного нервов. По этим нервам, преимущественно по верхнему гортанному нерву, импульсы, регулирующие дыхание, передаются в дыхательный центр, что вызывает изменение частоты и глубины дыхания.

Возбудимость дыхательного центра по отношению к рефлекторным и нервно-гуморальным влияниям поддерживается также афферентными импульсами из рецепторов, расположенных вне дыхательного аппарата.

Дыхание рефлекторно изменяется при раздражениях рецепторов кожи (прикосновении, тепло, холод), органов зрения, слуха, обоняния и вкуса. Дыхание изменяется при притоке афферентных импульсов из рецепторов скелетных мышц и сухожилий туловища, рук и ног.

Особо важное защитное значение имеют раздражения слизистой оболочек дыхательных путей. Раздражение пылью или слизью окончаний гортанного нерва в дыхательных путях вызывает судорожные выдыхательные движения при закрытой голосовой щели (кашель).

Когда раздражающие вещества, например пары аммиака, действуют на окончания тройничного нерва в носоглотке, происходит рефлекторная задержка дыхания, при этом может наступить сужение бронхов, которое тоже имеет защитное значение.

Раздражение носоглотки пылью или слизью вызывает чихание - глубокий вдох, а затем очень сильный и быстрый выдох при закрытом рте.

На дыхательный центр влияют также раздражения нервных окончаний в дуге аорты и каротидном синусе. Увеличение кровяного давления в них рефлекторио задерживает дыхание, а уменьшение кровяного давления, наоборот, усиливает дыхание. Рефлекторное возбуждение дыхательного центра вызывается также раздражением хеморецепторов дуги аорты и каротидного синуса углекислотой при повышенном содержании ее в крови и раздражениями рецепторов внутренних органов.

Гладкая мускулатура бронхов снабжена эфферентными нервными волокнами блуждающих и симпатических нервов. Блуждающие нервы вызывают сокращение бронхиальной мускулатуры и, следовательно, сужение бронхов. Симпатические нервы вызывают расслабление бронхиальной мускулатуры и, следовательно, расширение бронхов.

Пассивное расширение бронхов происходит при вдохе, а пассивное сужение - при выдохе.

Волнообразные сокращения мускулатуры бронхов имеют защитное значение, так как они при помощи волосков мерцательного эпителия отодвигают посторонние частицы, попавшие в бронхи (пыль), к началу дыхательных путей, где они выбрасываются кашлевыми движениями.

Особенности регуляции легочного дыхания у водных животных

У животных имеются морфологические приспособления: резко увеличенная грудная клетка, особо мощная дыхательная мускулатура, большая подвижность грудной клетки, открывающиеся вверх носовые отверстия (киты, дельфины). У дельфинов в 3 раза больше альвеол, чем у человека. У китообразных в мелких бронхах есть мышечные жомы, длительно удерживающие воздух. Физиологические приспособления у водных животных следующие. Во-первых, повышенная способность крови связывать кислород за счет увеличения содержания гемоглобина в эритроцитах и увеличенной способности гемоглобина связывать кислород - например, у дельфинов в 1,5 раза. У них во много раз больше миоглобина, который в отличие от гемоглобина депонирует кислород и отдает его при необходимости: например, у тюленя содержание миоглобина и мышцах 20-40% от сухого остатка мышечной ткани. Во-вторых, при нырянии не только останавливается дыхание, но и резко уменьшается частота сердцебиений и происходит сужение кровеносных сосудов всего тела за исключением снабжающих нервную систему, например у тюленя.

У всех ластоногих имеется специальный сфинктер из поперечнополосатой мышечной ткани, расположенный вокруг полой вены над диафрагмой. При нырянии он сдавливает полую вену и прекращает кровообращение во всем теле, кроме головы. Это обуславливает высокую устойчивость к большому содержанию углекислоты в крови и сохраняет на прежнем уровне ее снабжение кислородом. У ныряющих птиц также резко замедляются сердцебиение, они ритмически двигают под конечностями и крыльями, что вызывает перемешивание воздуха в воздушных мешках. В результате киты могут находиться под водой до 105, дельфины до 15, а утки до 23 мин.

Регуляция дыхания. Ритмические дыхательные движения совершаются во сне и при бодрствовании, не требуя участия нашего сознания. В то же время мы можем в широких пределах произвольно менять частоту и глубину дыхания, задержать дыхание на какое-то время, но не можем произвольно навсегда прекратить дышать, так как независимо от нашей воли дыхательные движения вновь возникнут, и через некоторое время устанавливается нормальный ритм дыхания.

Пневмотаксический центр регулирует работу центров вдоха и выдоха. В упрощенном виде механизм работы пневмотаксического центра можно представить следующим образом. При возбуждении центра вдоха нервные импульсы передаются и к центру выдоха - частично по прямым путям, но в основном через пневмотаксический центр, который усиливает и передает возбуждение вновь к центру вдоха через специальные тормозные структуры прекращая процесс возбуждения нейронов центра вдоха. Возбуждение центра вдоха приводит не только к возбуждению и сокращению дыхательных мышц, но и запускает механизм собственного выключения. Дыхательные мышцы, не получая приказа к сокращению, расслабляются и происходит выдох. Вышерасположенные отделы центральной нервной системы, включая и кору больших полушарий головного мозга, обеспечивают участие главных структур дыхательного центра в поведенческих реакциях, изменяют дыхание при речи, пении и т.п.

Рецепторы. Начальное звено любого рефлекторного механизма - это возбуждение рецепторов. С различных механорецепторов дыхательной системы возникают рефлекторные реакции, составляющие сущность механизма саморегуляции, формирующие нормальный ритм, глубину и частоту дыхания. При раздражении различных рецепторов слизистой носа, глотки, гортани возникают защитные рефлексы, например, чихание, кашель, приводящие к удалению инородных тел, попавших в дыхательную систему или накопившейся там слизи. Главная роль в механизме приспособления дыхания к условиям изменения потребности в кислороде принадлежит хеморецепторам.
Хеморецепторы бывают периферические и центральные. Периферические расположены в главных рефлексогенных зонах организма - место разветвления сонной артерии (синокаротидная зона) и зона дуги аорты. Центральные хеморецепторы располагаются в продолговатом мозге. Главный фактор, определяющий глубину и частоту дыхания и делающий невозможной самопроизвольное прекращение дыхания на длительный период или навсегда, - это углекислый газ. Углекислый газ, конечный продукт превращения веществ (диссимиляции), выполняет в организме целый ряд важных функций, одна из которых - регуляция дыхания. К изменению напряжения углекислого газа артериальной крови чувствительны все периферические и центральные хеморецепторы. К изменению напряжения кислорода только рецепторы каротидной зоны.