Линзы. Фокусное расстояние линз

Изображения:

1. Действительные – те изображения, которые мы получаем в результате пересечения лучей, прошедших через линзу. Они получаются в собирающей линзе;

2. Мнимые – изображения, образуемые расходящимися пучками, лучи которых на самом деле не пересекаются между собой, а пересекаются их продолжения, проведенные в обратном направлении.

Собирающая линза может создавать как действительное, так и мнимое изображение.

Рассеивающая линза создает только мнимое изображение.

Собирающая линза

Чтобы построить изображение предмета, нужно пустить два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

В результате построения получается уменьшенное, перевернутое, действительное изображение (см. Рис. 1).

Рис. 1. Если предмет располагается за двойным фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы, он пройдет через линзу, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается изображение, высота которого совпадает с высотой предмета. Изображение является перевернутым и действительным (Рис. 2).

Рис. 2. Если предмет располагается в точке двойного фокуса

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется и проходит через точку фокуса. Второй луч необходимо направить из верхней точки предмета через оптический центр линзы. Через линзу он проходит, не преломившись. На пересечении двух лучей ставим точку А’. Это и будет изображение верхней точки предмета.

Точно так же строится изображение нижней точки предмета.

В результате построения получается увеличенное, перевернутое, действительное изображение (см. Рис. 3).

Рис. 3. Если предмет располагается в пространстве между фокусом и двойным фокусом

Так устроен проекционный аппарат. Кадр киноленты располагается вблизи фокуса, тем самым получается большое увеличение.

Вывод: по мере приближения предмета к линзе изменяется размер изображения.

Когда предмет располагается далеко от линзы – изображение уменьшенное. При приближении предмета изображение увеличивается. Максимальным изображение будет тогда, когда предмет находится вблизи фокуса линзы.

Предмет не создаст никакого изображения (изображение на бесконечности). Так как лучи, попадая на линзу, преломляются и идут параллельно друг другу (см. Рис. 4).

Рис. 4. Если предмет находится в фокальной плоскости

5. Если предмет располагается между линзой и фокусом

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломится и пройдет через точку фокуса. Проходя через линзу, лучи расходятся. Поэтому изображение будет сформировано с той же стороны, что и сам предмет, на пересечении не самих линий, а их продолжений.

В результате построения получается увеличенное, прямое, мнимое изображение (см. Рис. 5).

Рис. 5. Если предмет располагается между линзой и фокусом

Таким образом устроен микроскоп.

Вывод(см. Рис. 6):

Рис. 6. Вывод

На основе таблицы можно построить графики зависимости изображения от расположения предмета (см. Рис. 7).

Рис. 7. График зависимости изображения от расположения предмета

График увеличения (см. Рис. 8).

Рис. 8. График увеличения

Построение изображения светящейся точки, которая располагается на главной оптической оси.

Чтобы построить изображение точки, нужно взять луч и направить его произвольно на линзу. Построить побочную оптическую ось параллельно лучу, проходящую через оптический центр. В том месте, где произойдет пересечение фокальной плоскости и побочной оптической оси, и будет второй фокус. В эту точку пойдет преломленный луч после линзы. На пересечении луча с главной оптической осью получается изображение светящейся точки (см. Рис. 9).

Рис. 9. График изображения светящейся тчки

Рассеивающая линза

Предмет располагается перед рассеивающей линзой.

Для построения необходимо использовать два луча. Первый луч проходит из верхней точки предмета параллельно главной оптической оси. На линзе луч преломляется таким образом, что продолжение этого луча пойдет в фокус. А второй луч, который проходит через оптический центр, пересекает продолжение первого луча в точке А’, – это и будет изображение верхней точки предмета.

Таким же образом строится изображение нижней точки предмета.

В результате получается прямое, уменьшенное, мнимое изображение (см. Рис. 10).

Рис. 10. График рассеивающей линзы

При перемещении предмета относительно рассеивающей линзы всегда получается прямое, уменьшенное, мнимое изображение.

1. Виды линз. Главная оптическая ось линзы

Линзой называют прозрачное для света тело, ограниченное двумя сферическими поверхностями (одна из поверхностей может быть плоской). Линзы, у которых середина толще, чем
края, называют выпуклыми, а те, у которых края толще середины, - вогнутыми. Выпуклая линза, изготовленная из вещества с оптической плотностью большей, чем у среды, в которой линза
находится, является собирающей, а вогнутая линза при тех же условиях - рассеивающей. Различные виды линз показаны на рис. 1: 1 - двояковыпуклая, 2 - двояковогнутая, 3 - плосковыпуклая, 4 - плосковогнутая, 3,4 - выпукловогнутая и вогнутовыпуклая.


Рис. 1. Линзы

Прямую О 1 О 2 , проходящую через центры сферических поверхностей, ограничивающих линзу, называют главной оптической осью линзы.

2. Тонкая линза, ее оптический центр.
Побочные оптические оси

Линзу, у которой толщина l =|С 1 С 2 | (см. рис. 1) пренебрежимо мала по сравнению с радиусами кривизны R 1 и R 2 поверхностей линзы и расстоянием d от предмета до линзы, называют тонкой. В тонкой линзе точки С 1 и С 2 , являющиеся вершинами шаровых сегментов, расположены настолько близко друг к другу, что их можно принять за одну точку. Эту лежащую на главной оптической оси точку О, через которую световые лучи проходят, не изменяя своего направления, называют оптическим центром тонкой линзы. Любую прямую, проходящую через оптический центр линзы, называют ее оптической осью. Все оптические оси, кроме главной, называют побочными оптическими осями.

Световые лучи, идущие вблизи главной оптической оси, называют параксиальными (приосевыми).

3. Главные фокусы и фокусные
расстояния линзы

Точку F на главной оптической оси, в которой пересекаются после преломления приосевые лучи, падающие на линзу параллельно главной оптической оси (или же продолжения этих преломленных лучей), называют главным фокусом линзы (рис. 2 и 3). Любая линза имеет два главных фокуса, которые расположены по обе стороны от нее симметрично ее оптическому центру.


Рис. 2 Рис. 3

У собирающей линзы (рис. 2) фокусы действительные, а у рассеивающей (рис. 3) - мнимые. Расстояние |ОР| = F от оптического центра линзы до ее главного фокуса называют фокусным. У собирающей линзы фокусное расстояние считают положительным, а у рассеивающей линзы - отрицательным.

4. Фокальные плоскости линзы, их свойства

Плоскость, проходящая через главный фокус тонкой линзы перпендикулярно главной оптической оси, называют фокальной. У каждой линзы есть две фокальные плоскости (М 1 М 2 и М 3 М 4 на рис. 2 и 3), которые расположены по обе стороны от линзы.

Лучи света, падающие на собирающую линзу параллельно какой-либо ее побочной оптической оси, после преломления в линзе сходятся в точке пересечения этой оси с фокальной плоскостью (в точке F’ на рис. 2). Эту точку называют побочным фокусом.

Формулы линзы

5.Оптическая сила линзы

Величину D, обратную фокусному расстоянию линзы, называют оптической силой линзы:

D =1/F (1)

У собирающей линзы F>0, следовательно, D>0, а у рассеивающей линзы F<0, следовательно, D<0, т.е. оптическая сила собирающей линзы положительна, а рассеивающей - отрицательна.

За единицу оптической силы принимают оптическую силу такой линзы, фокусное расстояние которой равно 1 м; эту единицу называют диоптрией (дптр):

1 дптр = = 1 м -1

6. Вывод формулы тонкой линзы на основе

геометрического построения хода лучей

Пусть перед собирающей линзой находится светящийся предмет АВ (рис. 4). Для построения изображения этого предмета необходимо построить изображения его крайних точек, причем удобно выбирать такие лучи, построение которых окажется наиболее простым. Таких лучей, в общем случае, может быть три:

а) луч АС, параллельный главной оптической оси, после преломления проходит через главный фокус линзы, т.е. идет по прямой CFA 1 ;


Рис. 4

б) луч АО, идущий через оптический центр линзы не преломляется и тоже приходит в точку А 1 ;

в) луч АВ, идущий через передний фокус линзы, после преломления идет параллельно главной оптической оси по прямой DA 1 .

Все три указанных луча где получается действительное изображение точки А. Опустив перпендикуляр из точки А 1 на главную оптическую ось, находим точку В 1 , являющуюся изображением точки В. Для построения изображения светящейся точки достаточно использовать два из трех перечисленных лучей.

Введем следующие обозначения |OB| = d – расстояние предмета от линзы, |OB 1 | = f – расстояние от линзы до изображения предмета, |OF| = F – фокусное расстояние линзы.

Используя рис. 4, выведем формулу тонкой линзы. Из подобия треугольников АОВ и А 1 ОВ 1 следует, что

(2)

Из подобия треугольников COF и A 1 FB 1 следует, что

а так как |AB| = |CO|, то


(4)

Из формул (2) и (3) следует, что


(5)

Поскольку |OB1|= f, |OB| = d, |FB1| = f – F и |OF| = F, формула (5) принимает вид f/d = (f – F)/F, откуда

FF = df – dF (6)

Разделив почленно формулу (6) на произведение dfF, получим


(7)

откуда


(8)

С учетом (1) получим


(9)

Соотношения (8) и (9) называют формулой тонкой собирающей линзы.

У рассеивающей линзы F<0, поэтому формула тонкой рассеивающей линзы имеет вид



(10)

7. Зависимость оптической силы линзы от кривизны ее поверхностей
и показателя преломления

Фокусное расстояние F и оптическая сила D тонкой линзы зависят от радиусов кривизны R 1 и R 2 ее поверхностей и относительного показателя преломления n 12 вещества линзы относительно окружающей среды. Эта зависимость выражается формулой

(11)

С учетом (11) формула тонкой линзы (9) принимает вид


(12)

Если одна из поверхностей линзы плоская (для нее R= ∞), то соответствующий ей член 1/R в формуле (12) равен нулю. Если поверхность вогнутая, то соответствующий ей член 1/R входит в эту формулу со знаком минус.

Знак правой части формулыm (12) определяет оптические свойства линзы. Если он положителен, то линза является собирающей, а если отрицателен - рассеивающей. Например, у двояковыпуклой стеклянной линзы, находящейся в воздухе, (n 12 - 1) >0 и

т.е. правая часть формулы (12) положительна. Поэтому такая линза в воздухе является собирающей. Если же ту же самую линзу поместить в прозрачную среду с оптической плотностью
большей, чем у стекла (например, в сероуглерод), то она станет рассеивающей, поскольку в этом случае у нее (n 12 - 1) <0 и, хотя
, знак у правой части формулы/(17.44) станет
отрицательным.

8.Линейное увеличение линзы

Размер изображения, создаваемого линзой, изменяется в зависимости от положения предмета относительно линзы. Отношение размера изображения к размеру изображаемого предмета называют линейным увеличением и обозначают Г.

Обозначим h размер предмета АВ и H - размер А 1 В 2 - его изображения. Тогда из формулы (2) следует, что

(13)

10. Построение изображений в собирающей линзе

В зависимости от расстояния d предмета от линзы могут быть шесть различных случаев построения изображения этого предмета:

а) d =∞. В данном случае световые лучи от предмета падают на линзу параллельно либо главной, либо какой-нибудь побочной оптической оси. Такой случай изображен на рис. 2, из которого видно, что если предмет бесконечно удален от линзы, то изображение предмета действительное, в виде точки, находится в фокусе линзы (главном или побочном);

б) 2F < d <∞. Предмет находится на конечном расстоянии от линзы большем, чем ее удвоенное фокусное расстояние (см. рис. 3). Изображение предмета действительное, перевернутое, уменьшенное находится между фокусом и точкой, отстоящей от линзы на двойное фокусное расстояние. Проверить правильность построения данного изображения можно
путем расчета. Пусть d= 3F, h = 2 см. Из формулы (8) следует, что

(14)

Так как f > 0, изображение действительное. Оно находится за линзой на расстоянии ОВ1=1,5F. Всякое действительное изображение является перевернутым. Из формулы
(13) следует, что

; H = 1 см

т. е. изображение уменьшенное. Аналогично с помощью расчета, основанного на формулах (8), (10) и (13), можно проверить правильность построения любого изображения в линзе;

в) d=2F. Предмет находится на двойном фокусном расстоянии от линзы (рис. 5). Изображение предмета действительное, перевернутое, равное предмету, находится за линзой на
двойном фокусном расстоянии от нее;


Рис. 5

г) F


Рис. 6

д) d= F. Предмет находится в фокусе линзы (рис. 7). В этом случае изображения предмета не существует (оно находится в бесконечности), поскольку лучи от каждой точки предмета после преломления в линзе идут параллельным пучком;


Рис. 7

е) dболее далеком расстоянии.


Рис. 8

11. Построение изображений в рассеивающей линзе

Построим изображение предмета при двух различных его расстояниях от линзы (рис. 9). Из рисунка видно, что на каком бы расстоянии ни находился предмет от рассеивающей линзы, изображение предмета мнимое, прямое, уменьшенное находится между линзой и ее фокусом
со стороны изображаемого предмета.


Рис. 9

Построение изображений в линзах с помощью побочных осей и фокальной плоскости

(Построение изображения точки, лежащей на главной оптической оси)


Рис. 10

Пусть светящаяся точка S находится на главной оптической оси собирающей линзы (рис. 10). Чтобы найти, где образуется ее изображение S’, проведем из точки S два луча: луч SO вдоль главной оптической оси (он проходит через оптический центр линзы, не преломляясь) и луч SВ, падающий на линзу в произвольной точке В.

Начертим фокальную плоскость ММ 1 линзы и проведем побочную ось ОF’, параллельную лучу SВ (показана штриховой линией). Она пересечется с фокальной плоскостью в точке S’.
Как отмечалось в п. 4, через эту точку F должен пройти луч после преломления в точке В. Этот луч ВF’S’ пересекается с лучом SOS’ в точке S’, которая и является изображением светящейся точки S.

Построение изображения предмета, размер которого больше линзы

Пусть предмет АВ расположен на конечном расстоянии от линзы (рис. 11). Чтобы найти, где получится изображение этого предмета, проведем из точки А два луча: луч АОА 1 , прохоходящий через оптический центр линзы без преломления, и луч АС, падающий на линзу в произвольной точке С. Начертим фокальную плоскость ММ 1 линзы и проведем побочную ось ОF’, параллельную лучу АС (показана штриховой линией). Она пересечется с фокальной плоскостью в точке F’.


Рис. 11

Через эту точку F’ пройдет луч, преломившийся в точке С. Этот луч СF’А 1 пересекается с лучом АОА 1 в точке А 1 , которая и является изображением светящейся точки А. Чтобы получить все изображение А 1 В 1 предмета АВ, опускаем перпендикуляр из точки А 1 на главную оптическую ось.

Лупа

Известно, что для того, чтобы увидеть на предмете мелкие детали, их нужно рассматривать под большим углом зрения, но увеличение этого угла ограничено пределом аккомодационных возможностей глаза. Увеличить угол зрения (сохраняя расстояние наилучшего зрения d o) можно, используя оптические приборы {лупы, микроскопы}.

Лупой называют короткофокусную двояковыпуклую линзу или систему линз, действующих как одна собирающая линза обычно фокусное расстояние лупы не превышает 10см).


Рис. 12

Ход лучей в лупе покаpан на рис. 12. Лупу помещают близко к глазу,
а рассматриваемый предмет AВ=A 1 В 1 располагают между лупой и ее передним фокусом, чуть ближе последнего. Подбирают положение лупы между глазом и предметом так, чтобы видеть резкое изображение предмета. Это изображение А 2 В 2 получается мнимым, прямым, увеличенным и находится на расстоянии наилучшего зрения |ОВ|=d о от глаза.

Как видно из рис. 12, использование лупы приводит к увеличению угла зрения, под которым глаз рассматривает предмет. Действительно, когда предмет находился в положении АВ и рассматривался невооруженным глазом, угол зрения был φ 1 . Предмет поместили между фокусом и оптическим центром лупы в положение А 1 В 1 , и угол зрения стал φ 2 . Поскольку φ 2 > φ 1 , это
значит, что с помощью лупы можно рассмотреть на предмете более мелкие детали, чем невооруженным глазом.

Из рис. 12 видно также, что линейное увеличение лупы


Так как |OB 2 |=d o , а |ОВ|≈F (фокусному расстоянию лупы), то

Г=d о /F,

следовательно, увеличение, даваемое лупой, равно отношению расстояния наилучшего зрения к фокусному расстоянию лупы.

Микроскоп

Микроскопом называют оптический прибор, служащий для рассматривания очень мелких предметов (в том числе невидимых невооруженным глазом) под большим углом зрения.

Микроскоп состоит из двух собирающих линз - короткофокусного объектива и длиннофокусного окуляра, расстояние между которыми может изменяться. Следовательно, F 1 <

Ход лучей в микроскопе показан на рис. 13. Объектив создает действительное, перевернутое, увеличенное промежуточное изображение А 1 В 2 предмета АВ.


Рис. 13

282.

Линейное увеличение

С помощью микрометриче-
ского винта окуляр помещают
относительно объектива таким
образом, чтобы это промежу-
точное изображение А\В\ ока-
залось между передним фоку-
сом Рч и оптическим центром
Оч окуляра. Тогда окуляр
становится лупой и создает мни-
мое, прямое (относительно про-
межуточного) и увеличенное
изображение ЛчВч предмета ав.
Его положение можно найти,
используя свойства фокальной
плоскости и побочных осей (ось
О^Р’ проводят параллельно лу-
чу 1, а ось ОчР» - параллель-
но лучу 2). Как видно из
рис. 282, использование микро-
скопа приводит к значительно-
му увеличению угла зрения,
под которым глаз рассматрива-
ет предмет (фа ^> фО, что поз-
воляет видеть детали, не ви-
димые невооруженным глазом.
микроскопа

\АМ 1Л2Й2 И|й||

Г=

\АВ\ |Л,5,| \АВ\

Так как \А^Вч\/\А\В\\== Гок-линейное увеличение окуляра и
\А\В\\/\АВ\== Гоб -линейное увеличение объектива, то линейное
увеличение микроскопа

(17.62)

Г== Гоб Гок.

Из рис. 282 видно, что
» |Л1Й,1 |0,Я||

\АВ\ 150,1 ‘

где 10,5, | = |0/7, | +1/^21+1ад1.

Обозначим 6 расстояние между задним фокусом объектива
и передним фокусом окуляра, т. е. 6 = \Р\Р’г\. Так как 6 ^> \ОР\\
и 6 » \Р2В\, то |0|5|1 ^ 6. Поскольку |05|| ^ Роб, получаем

б

Роб

(17.63)

Линейное увеличение окуляра определяют по той же формуле
(17.61), что и увеличение лупы, т. е.

384

Гок=

а»

Гок

(17.64)

(17.65)

Подставив (17.63) и (17.64) в формулу (17.62), получим

бйо

Г==

/^об/м

Формула (17.65) определяет линейное увеличение микроскопа.

Разработки уроков (конспекты уроков)

Линия УМК А. В. Перышкина. Физика (7-9)

Внимание! Администрация сайта сайт не несет ответственности за содержание методических разработок, а также за соответствие разработки ФГОС.

Цели урока:

  • выяснить что такое линза, провести их классификацию, ввести понятия: фокус, фокусное расстояние, оптическая сила, линейное увеличение;
  • продолжить развитие умений решать задачи по теме.

Ход урока

Пою перед тобой в восторге похвалу
Не камням дорогим, ни злату, но СТЕКЛУ.

М.В. Ломоносов

В рамках данной темы вспомним, что такое линза; рассмотрим общие принципы построения изображений в тонкой линзе, а также выведем формулу для тонкой линзы.

Ранее познакомились с преломлением света, а также вывели закон преломления света.

Проверка домашнего задания

1) опрос § 65

2) фронтальный опрос (см. презентацию)

1.На каком из рисунков правильно показан ход луча, проходящего через стеклянную пластину, находящуюся в воздухе?

2. На каком из приведённых ниже рисунков правильно построено изображение в вертикально расположенном плоском зеркале?


3.Луч света переходит из стекла в воздух, преломляясь на границе раздела двух сред. Какое из направлений 1–4 соответствует преломленному лучу?


4. Котёнок бежит к плоскому зеркалу со скоростью V = 0,3 м/с. Само зеркало движется в сторону от котёнка со скоростью u = 0,05 м/с. С какой скоростью котёнок приближается к своему изображению в зеркале?


Изучение нового материала

Вообще, слово линза - это слово латинское, которое переводится как чечевица. Чечевица - это растение, плоды которого очень похожи на горох, но горошины не круглые, а имеют вид пузатых лепешек. Поэтому все круглые стекла, имеющие такую форму, и стали называть линзами.


Первое упоминание о линзах можно найти в древнегреческой пьесе Аристофана «Облака» (424 год до нашей эры), где с помощью выпуклого стекла и солнечного света добывали огонь. А возраст самой древней из обнаруженных линз более 3000 лет. Это так называемая линза Нимруда . Она была найдена при раскопках одной из древних столиц Ассирии в Нимруде Остином Генри Лэйардом в 1853 году. Линза имеет форму близкую к овалу, грубо шлифована, одна из сторон выпуклая, а другая плоская. В настоящее время она храниться в британском музее - главном историко-археологическом музее Великобритании.

Линза Нимруда

Итак, в современном понимании, линзы - это прозрачные тела, ограниченные двумя сферическими поверхностями. (записать в тетрадь) Чаще всего используются сферические линзы, у которых ограничивающими поверхностями выступают сферы или сфера и плоскость. В зависимости от взаимного размещения сферических поверхностей или сферы и плоскости, различают выпуклые и вогнутые линзы . (Дети рассматривают линзы из набора «Оптика»)

В свою очередь выпуклые линзы делятся на три вида - плоско выпуклые, двояковыпуклые и вогнуто-выпуклая; а вогнутые линзы подразделяются на плосковогнутые, двояковогнутые и выпукло-вогнутые.


(записать)

Любую выпуклую линзы можно представить в виде совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к середине линзы, а вогнутую - как совокупностей плоскопараллельной стеклянной пластинки в центре линзы и усеченных призм, расширяющихся к краям.

Известно, что если призма будет сделана из материала, оптически более плотного, чем окружающая среда, то она будет отклонять луч к своему основанию. Поэтому параллельный пучок света после преломления в выпуклой линзе станет сходящимся (такие называются собирающими ), а в вогнутой линзе наоборот, параллельный пучок света после преломления станет расходящимся (поэтому такие линзы называются рассеивающими ).


Для простоты и удобства, будем рассматривать линзы, толщина которых пренебрежимо мала, по сравнению с радиусами сферических поверхностей. Такие линзы называют тонкими линзами . И в дальнейшем, когда будем говорить о линзе, всегда будем понимать именно тонкую линзу.

Для условного обозначения тонких линз применяют следующий прием: если линза собирающая , то ее обозначают прямой со стрелочками на концах, направленными от центра линзы, а если линза рассеивающая , то стрелочки направлены к центру линзы.

Условное обозначение собирающей линзы


Условное обозначение рассеивающей линзы


(записать)

Оптический центр линзы - это точка, пройдя через которую лучи не испытывают преломления.

Любая прямая, проходящая через оптический центр линзы, называется оптической осью.

Оптическую же ось, которая проходит через центры сферических поверхностей, которые ограничивают линзу, называют главной оптической осью.

Точка, в которой пересекаются лучи, падающие на линзу параллельно ее главной оптической оси (или их продолжения), называется главным фокусом линзы . Следует помнить, что у любой линзы существует два главных фокуса - передний и задний, т.к. она преломляет свет, падающий на нее с двух сторон. И оба этих фокуса расположены симметрично относительно оптического центра линзы.

Собирающая линза


(зарисовать)

Рассеивающая линза


(зарисовать)

Расстояние от оптического центра линзы до ее главного фокуса, называется фокусным расстоянием .

Фокальная плоскость - это плоскость, перпендикулярная главной оптической оси линзы, проходящая через ее главный фокус.
Величину, равную обратному фокусному расстоянию линзы, выраженному в метрах, называют оптической силой линзы. Она обозначается большой латинской буквой D и измеряется в диоптриях (сокращенно дптр).


(Записать)


Впервые, полученную нами формулу тонкой линзы, вывел Иоганн Кеплер в 1604 году. Он изучал преломления света при малых углах падения в линзах различной конфигурации.

Линейное увеличение линзы - это отношение линейного размера изображения к линейному размеру предмета. Обозначается оно большой греческой буквой G.


Решение задач (у доски) :

  • Стр 165 упр 33 (1,2)
  • Свеча находится на расстоянии 8 см от собирающей линзы, оптическая сила которой равна 10 дптр. На каком расстоянии от линзы получится изображение и каким оно будет?
  • На каком расстоянии от линзы с фокусным расстоянием 12см надо поместить предмет, чтобы его действительное изображение было втрое больше самого предмета?

Дома: §§ 66 №№1584, 1612-1615 (сборник Лукашика)

Линзы, как правило, имеют сферическую или близкую к сферической поверхность. Они могут быть вогнутыми, выпуклыми или плоскими (радиус равен бесконечности). Обладают двумя поверхностями, через которые проходит свет. Они могут сочетаться по-разному, образуя различные виды линз (фото приведено далее в статье):

  • Если обе поверхности выпуклые (изогнуты наружу), центральная часть толще, чем по краям.
  • Линза с выпуклой и вогнутой сферами называется мениском.
  • Линза с одной плоской поверхностью носит название плоско-вогнутой или плоско-выпуклой, в зависимости от характера другой сферы.

Как определить вид линзы? Остановимся на этом подробнее.

Собирающие линзы: виды линз

Независимо от сочетания поверхностей, если их толщина в центральной части больше, чем по краям, они называются собирающими. Имеют положительное фокусное расстояние. Различают следующие виды собирающих линз:

  • плоско-выпуклые,
  • двояковыпуклые,
  • вогнуто-выпуклые (мениск).

Их еще называют «положительными».

Рассеивающие линзы: виды линз

Если их толщина в центре тоньше, чем по краям, то они носят название рассеивающих. Имеют отрицательное фокусное расстояние. Существуют такие виды рассеивающих линз:

  • плоско-вогнутые,
  • двояковогнутые,
  • выпукло-вогнутые (мениск).

Их еще называют «отрицательными».

Базовые понятия

Лучи от точечного источника расходятся из одной точки. Их называют пучком. Когда пучок входит в линзу, каждый луч преломляется, изменяя свое направление. По этой причине пучок может выйти из линзы в большей или меньшей степени расходящимся.

Некоторые виды оптических линз изменяют направление лучей настолько, что они сходятся в одной точке. Если источник света расположен, по меньшей мере, на фокусном расстоянии, то пучок сходится в точке, удаленной, по крайней мере, на ту же дистанцию.

Действительные и мнимые изображения

Точечный источник света называется действительным объектом, а точка сходимости пучка лучей, выходящего из линзы, является его действительным изображением.

Важное значение имеет массив точечных источников, распределенных на, как правило, плоской поверхности. Примером может служить рисунок на матовом стекле, подсвеченный сзади. Другим примером является диафильм, освещенный сзади так, чтобы свет от него проходил через линзу, многократно увеличивающую изображение на плоском экране.

В этих случаях говорят о плоскости. Точки на плоскости изображения 1:1 соответствуют точкам на плоскости объекта. То же относится и к геометрическим фигурам, хотя полученная картинка может быть перевернутой по отношению к объекту сверху вниз или слева направо.

Схождение лучей в одной точке создает действительное изображение, а расхождение - мнимое. Когда оно четко очерчено на экране - оно действительное. Если же изображение можно наблюдать, только посмотрев через линзу в сторону источника света, то оно называется мнимым. Отражение в зеркале - мнимое. Картину, которую можно увидеть через телескоп - тоже. Но проекция объектива камеры на пленку дает действительное изображение.

Фокусное расстояние

Фокус линзы можно найти, пропустив через нее пучок параллельных лучей. Точка, в которой они сойдутся, и будет ее фокусом F. Расстояние от фокальной точки до объектива называют его фокусным расстоянием f. Параллельные лучи можно пропустить и с другой стороны и таким образом найти F с двух сторон. Каждая линза обладает двумя F и двумя f. Если она относительно тонка по сравнению с ее фокусными расстояниями, то последние приблизительно равны.

Дивергенция и конвергенция

Положительным фокусным расстоянием характеризуются собирающие линзы. Виды линз данного типа (плоско-выпуклые, двояковыпуклые, мениск) сводят лучи, выходящие из них, больше, чем они были сведены до этого. Собирающие объективы могут формировать как действительное, так и мнимое изображение. Первое формируется только в случае, если расстояние от линзы до объекта превышает фокусное.

Отрицательным фокусным расстоянием характеризуются рассеивающие линзы. Виды линз этого типа (плоско-вогнутые, двояковогнутые, мениск) разводят лучи больше, чем они были разведены до попадания на их поверхность. Рассеивающие линзы создают мнимое изображение. И только когда сходимость падающих лучей значительна (они сходятся где-то между линзой и фокальной точкой на противоположной стороне), образованные лучи все еще могут сходиться, образуя действительное изображение.

Важные различия

Следует быть очень внимательными, чтобы отличать схождение или расхождение лучей от конвергенции или дивергенции линзы. Виды линз и пучков света могут не совпадать. Лучи, связанные с объектом или точкой изображения, называются расходящимися, если они «разбегаются», и сходящимся, если они «собираются» вместе. В любой коаксиальной оптической системе оптическая ось представляет собой путь лучей. Луч вдоль этой оси проходит без какого-либо изменения направления движения из-за преломления. Это, по сути, хорошее определение оптической оси.

Луч, который с расстоянием отдаляется от оптической оси, называется расходящимся. А тот, который к ней становится ближе, носит название сходящегося. Лучи, параллельные оптической оси, имеют нулевое схождение или расхождение. Таким образом, когда говорят о схождении или расхождении одного луча, его соотносят с оптической осью.

Некоторые виды которых такова, что луч отклоняется в большей степени к оптической оси, являются собирающими. В них сходящиеся лучи сближаются еще больше, а расходящиеся отдаляются меньше. Они даже в состоянии, если их сила достаточна для этого, сделать пучок параллельным или даже сходящимся. Аналогично рассеивающая линза может развести расходящиеся лучи еще больше, а сходящиеся - сделать параллельными или расходящимися.

Увеличительные стекла

Линза с двумя выпуклыми поверхностями толще в центре, чем по краям, и может использоваться в качестве простого увеличительного стекла или лупы. При этом наблюдатель смотрите через нее на мнимое, увеличенное изображение. Объектив камеры, однако, формирует на пленке или сенсоре действительное, как правило, уменьшенное в размерах по сравнению с объектом.

Очки

Способность линзы изменять сходимость света называется ее силой. Выражается она в диоптриях D = 1 / f, где f - фокусное расстояние в метрах.

У линзы с силой 5 диоптрий f = 20 см. Именно диоптрии указывает окулист, выписывая рецепт очков. Скажем, он записал 5,2 диоптрий. В мастерской возьмут готовую заготовку в 5 диоптрий, полученную на заводе-изготовителе, и отшлифуют немного одну поверхность, чтобы добавить 0,2 диоптрии. Принцип состоит в том, что для тонких линз, в которых две сферы расположены близко друг к другу, соблюдается правило, согласно которому общая их сила равна сумме диоптрий каждой: D = D 1 + D 2 .

Труба Галилея

Во времена Галилея (начало XVII века), очки в Европе были широко доступны. Они, как правило, изготавливались в Голландии и распространялись уличными торговцами. Галилео слышал, что кто-то в Нидерландах поместил два вида линз в трубку, чтобы удаленные объекты казались больше. Он использовал длиннофокусный собирающий объектив в одном конце трубки, и короткофокусный рассеивающий окуляр на другом конце. Если фокусное расстояние объектива равно f o и окуляра f e , то дистанция между ними должна быть f o -f e , а сила (угловое увеличение) f o /f e . Такая схема называется трубой Галилея.

Телескоп обладает увеличением 5 или 6 крат, сравнимым с современными ручными биноклями. Этого достаточно для многих захватывающих Можно без проблем увидеть лунные кратеры, четыре луны Юпитера, фазы Венеры, туманности и звездные скопления, а также слабые звезды в Млечном Пути.

Телескоп Кеплера

Кеплер услышал обо всем этом (он и Галилей вели переписку) и построил еще один вид телескопа с двумя собирающими линзами. Та, у которой большое фокусное расстояние, является объективом, а та, у которой оно меньше - окуляром. Расстояние между ними равно f o + f e , а угловое увеличение составляет f o /f e . Этот кеплеровский (или астрономический) телескоп создает перевернутое изображение, но для звезд или луны это не имеет значения. Данная схема обеспечила более равномерное освещение поля зрения, чем телескоп Галилея, и была более удобна в использовании, так как позволяла держать глаза в фиксированном положении и видеть все поле зрения от края до края. Устройство позволяло достичь более высокого увеличения, чем труба Галилея, без серьезного ухудшения качества.

Оба телескопа страдают от сферической аберрации, в результате чего изображения не полностью сфокусированы, и хроматической аберрации, создающей цветные ореолы. Кеплер (и Ньютон) считал, что эти дефекты невозможно преодолеть. Они не предполагали, что возможны ахроматические виды которых станет известна лишь в XIX веке.

Зеркальные телескопы

Грегори предположил, что в качестве объективов телескопов можно использовать зеркала, так как в них отсутствует цветная окантовка. Ньютон воспользовался этой идеей и создал ньютоновскую форму телескопа из вогнутого посеребренного зеркала и положительного окуляра. Он передал образец Королевскому обществу, где тот находится и по сей день.

Однолинзовый телескоп может проецировать изображение на экран или фотопленку. Для должного увеличения требуется положительная линза с большим фокусным расстоянием, скажем, 0,5 м, 1 м или много метров. Такая компоновка часто используется в астрономической фотографии. Людям, незнакомым с оптикой, может показаться парадоксальной ситуация, когда более слабая длиннофокусная линза дает большее увеличение.

Сферы

Высказывались предположения, что древние культуры, возможно, имели телескопы, потому что они делали маленькие стеклянные шарики. Проблема состоит в том, что неизвестно, для чего они использовались, и они, конечно, не могли бы лечь в основу хорошего телескопа. Шарики могли применяться для увеличения мелких объектов, но качество при этом вряд ли было удовлетворительным.

Фокусное расстояние идеальной стеклянной сферы очень короткое и формирует действительное изображение очень близко от сферы. Кроме того, аберрации (геометрические искажения) значительные. Проблема кроется в расстоянии между двумя поверхностями.

Однако если сделать глубокую экваториальную канавку, чтобы блокировать лучи, которые вызывают дефекты изображения, она превращается из очень посредственной лупы в прекрасную. Такое решение приписывается Коддингтону, а увеличитель его имени можно приобрести сегодня в виде небольших ручных луп для изучения очень маленьких объектов. Но доказательств того, что это было сделано до 19-го века, нет.

"Линзы. Построение изображения в линзах"

Цели урока:

    Образовательная: продолжим изучение световых лучей и их распространение, ввести понятие линзы, изучить действие собирающей и рассеивающей линз; научить строить изображения даваемые линзой.

    Развивающая: способствовать развитию логического мышления, умений видеть, слышать, собирать и осмысливать информацию, самостоятельно делать выводы.

    Воспитательная: воспитывать внимательность, усидчивость и аккуратность в работе; учиться пользоваться приобретенными знаниями для решения практических и познавательных задач.

Тип урока: комбинированный, включающий освоение новых знаний, умений, навыков, закрепление и систематизацию ранее полученных знаний.

Ход урока

Организационный момент (2 мин):

    приветствие учащихся;

    проверка готовности учащихся к уроку;

    ознакомление с целями урока (образовательная цель ставится общая,не называя тему урока);

    создание психологического настроя:

Мирозданье, постигая,
Все познай, не отбирая,
Что внутри - во внешнем сыщешь,
Что вовне – внутри отыщешь
Так примите ж без оглядки
Мира внятные загадки...

И. Гете

Повторение ранее изученного материала происходит в несколько этапов (26 мин):

1. Блиц – опрос (ответом на вопрос может быть только да или нет, для лучшего обзора ответов учащихся можно использовать сигнальные кароточки, «да» - красные, «нет» - зеленые, необходимо уточнять правильный ответ):

    В однородной среде свет распространяется прямолинейно? (да)

    Угол отражения обозначается латинской буквой бетта? (нет)

    Отражение бывает зеркальным и диффузным? (да)

    Угол падения всегда больше угла отражения? (нет)

    На границе двух прозрачных сред, световой луч меняет свое направление? (да)

    Угол преломления всегда больше угла падения? (нет)

    Скорость света в любой среде одинакова и равна 3*10 8 м/с? (нет)

    Скорость света в воде меньше скорости света в вакууме? (да)

Рассмотреть слайд 9: “Построение изображения в собирающей линзе” ( ), используя опорный конспект рассмотреть используемые лучи.

Выполнить построение изображения в собирающей линзе на доске, дать его характеристику (выполняет преподаватель или учащийся).

Рассмотреть слайд 10: “Построение изображения в рассеивающей линзе” ( ).

Выполнить построение изображения в рассеивающей линзе на доске, дать его характеристику (выполняет преподаватель или учащийся).

5. Проверка понимания нового материла, его закрепление (19 мин):

Работа учащихся у доски:

Построить изображение предмета в собирающей линзе:

Опережающее задание:

Самостоятельная работа с выбором заданий.

6. Подведение итогов урока (5 мин):

    С чем познакомились на уроке, на что обратить внимание?

    Почему в жаркий летний день растения не советуют поливать водой сверху?

    Оценки за работу на уроке.

7. Домашнее задание (2 мин):

Построить изображение предмета в рассеивающей линзе:

    Если предмет находится за фокусом линзы.

    Если предмет находится между фокусом и линзой.

К уроку прилагается , , и .