Kompleksna funkcija in njen derivat. Kompleksni derivati

Funkcije kompleksnega tipa ne ustrezajo vedno definiciji kompleksne funkcije. Če obstaja funkcija v obliki y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, potem je ni mogoče šteti za kompleksno, za razliko od y = sin 2 x.

Ta članek bo prikazal koncept kompleksne funkcije in njeno identifikacijo. Delajmo s formulami za iskanje odvoda s primeri rešitev v zaključku. Uporaba tabele odvodov in diferenciacijskih pravil bistveno skrajša čas iskanja odvoda.

Yandex.RTB R-A-339285-1

Osnovne definicije

Definicija 1

Kompleksna funkcija je tista, katere argument je tudi funkcija.

Označeno je tako: f (g (x)). Imamo, da se funkcija g (x) šteje za argument f (g (x)).

Definicija 2

Če obstaja funkcija f in je kotangensna funkcija, potem je g(x) = ln x funkcija naravnega logaritma. Ugotovimo, da bo kompleksna funkcija f (g (x)) zapisana kot arctg(lnx). Ali funkcija f, ki je funkcija, dvignjena na 4. potenco, kjer g (x) = x 2 + 2 x - 3 velja za celotno racionalno funkcijo, dobimo, da je f (g (x)) = (x 2 + 2 x - 3) 4 .

Očitno je g(x) lahko kompleksen. Iz primera y = sin 2 x + 1 x 3 - 5 je razvidno, da ima vrednost g kubični koren ulomka. Ta izraz lahko označimo kot y = f (f 1 (f 2 (x))). Od koder imamo, da je f sinusna funkcija in f 1 funkcija, ki se nahaja pod kvadratnim korenom, je f 2 (x) = 2 x + 1 x 3 - 5 ulomljena racionalna funkcija.

Definicija 3

Stopnja ugnezdenosti je določena s poljubnim naravnim številom in je zapisana kot y = f (f 1 (f 2 (f 3 (. . . (f n (x)))))) .

Definicija 4

Koncept sestave funkcij se nanaša na število ugnezdenih funkcij glede na pogoje problema. Za rešitev uporabite formulo za iskanje odvoda kompleksne funkcije oblike

(f (g (x))) " = f " (g (x)) g " (x)

Primeri

Primer 1

Poiščite odvod kompleksne funkcije oblike y = (2 x + 1) 2.

rešitev

Pogoj kaže, da je f funkcija kvadriranja, g(x) = 2 x + 1 pa velja za linearno funkcijo.

Uporabimo izpeljano formulo za kompleksno funkcijo in zapišimo:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Poiskati je treba odvod s poenostavljeno izvirno obliko funkcije. Dobimo:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Od tu imamo to

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Rezultati so bili enaki.

Pri reševanju tovrstnih problemov je pomembno razumeti, kje se bo nahajala funkcija oblike f in g (x).

Primer 2

Poiskati bi morali odvode kompleksnih funkcij oblike y = sin 2 x in y = sin x 2.

rešitev

Prvi zapis funkcije pravi, da je f funkcija kvadriranja in g(x) funkcija sinusa. Potem to razumemo

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Drugi vnos kaže, da je f sinusna funkcija, g(x) = x 2 pa potenčno funkcijo. Iz tega sledi, da produkt kompleksne funkcije zapišemo kot

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Formula za izpeljanko y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) bo zapisana kot y " = f " (f 1 (f 2 (f 3 (. . (f n (x))) · f 1 " (f 3 (. . . (f n (x)))) · · f 2 " (. . . (f n (x) ))) )) · . . . fn "(x)

Primer 3

Poiščite odvod funkcije y = sin (ln 3 a r c t g (2 x)).

rešitev

Ta primer prikazuje težave pri pisanju in določanju lokacije funkcij. Potem je y = f (f 1 (f 2 (f 3 (f 4 (x))))) kjer je f , f 1 , f 2 , f 3 , f 4 (x) funkcija sinusa, funkcija dviga do 3 stopnje, funkcija z logaritmom in osnovo e, arktangens in linearna funkcija.

Iz formule za definiranje kompleksne funkcije imamo to

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x)

Dobimo, kar moramo najti

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) kot odvod sinusa po tabeli odvodov, nato f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) kot odvod potenčne funkcije, potem f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) kot logaritemski odvod, potem f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) kot odvod arktangensa, potem je f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Pri iskanju odvoda f 4 (x) = 2 x odstranite 2 iz znaka odvoda z uporabo formule za odvod potenčne funkcije z eksponentom, ki je enak 1, nato pa f 4 " (x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

Združimo vmesne rezultate in dobimo to

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Analiza takšnih funkcij spominja na lutke. Pravil razlikovanja ni mogoče vedno eksplicitno uporabiti z uporabo izpeljane tabele. Pogosto morate uporabiti formulo za iskanje derivatov kompleksnih funkcij.

Obstaja nekaj razlik med kompleksnim videzom in kompleksnimi funkcijami. Z jasno sposobnostjo razlikovanja tega bo iskanje derivatov še posebej enostavno.

Primer 4

Treba je razmisliti o podaji takega primera. Če obstaja funkcija oblike y = t g 2 x + 3 t g x + 1, jo lahko obravnavamo kot kompleksno funkcijo oblike g (x) = t g x, f (g) = g 2 + 3 g + 1 . Očitno je treba uporabiti formulo za kompleksen derivat:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Funkcija oblike y = t g x 2 + 3 t g x + 1 se ne šteje za kompleksno, saj ima vsoto t g x 2, 3 t g x in 1. Vendar t g x 2 velja za kompleksno funkcijo, potem dobimo potenčno funkcijo v obliki g (x) = x 2 in f, ki je tangentna funkcija. Če želite to narediti, ločite po količini. To razumemo

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Pojdimo k iskanju odvoda kompleksne funkcije (t g x 2) ":

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Dobimo, da je y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Funkcije kompleksnega tipa lahko vključimo v kompleksne funkcije, same kompleksne funkcije pa so lahko komponente funkcij kompleksnega tipa.

Primer 5

Na primer, razmislite o kompleksni funkciji oblike y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

To funkcijo lahko predstavimo kot y = f (g (x)), kjer je vrednost f funkcija logaritma z osnovo 3, g (x) pa velja za vsoto dveh funkcij v obliki h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 in k (x) = ln 2 x · (x 2 + 1) . Očitno je y = f (h (x) + k (x)).

Razmislite o funkciji h(x). To je razmerje l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 proti m (x) = e x 2 + 3 3

Imamo, da je l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) vsota dveh funkcij n (x) = x 2 + 7 in p ( x) = 3 cos 3 (2 x + 1) , kjer je p (x) = 3 p 1 (p 2 (p 3 (x))) je kompleksna funkcija z numeričnim koeficientom 3 in p 1 je kubna funkcija, p 2 s kosinusno funkcijo, p 3 (x) = 2 x + 1 z linearno funkcijo.

Ugotovili smo, da je m (x) = e x 2 + 3 3 = q (x) + r (x) vsota dveh funkcij q (x) = e x 2 in r (x) = 3 3, kjer je q (x) = q 1 (q 2 (x)) je kompleksna funkcija, q 1 je funkcija z eksponento, q 2 (x) = x 2 je potenčna funkcija.

To kaže, da je h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Ko preidemo na izraz v obliki k (x) = ln 2 x (x 2 + 1) = s (x) t (x), je jasno, da je funkcija predstavljena v obliki kompleksa s (x) = ln 2 x = s 1 ( s 2 (x)) z racionalnim celim številom t (x) = x 2 + 1, kjer je s 1 kvadriranje funkcije in s 2 (x) = ln x logaritemsko z osnovo e .

Iz tega sledi, da bo izraz v obliki k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Potem to razumemo

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Na podlagi struktur funkcije je postalo jasno, kako in katere formule je treba uporabiti za poenostavitev izraza pri njegovem razlikovanju. Za seznanitev s tovrstnimi problemi in za koncept njihove rešitve se je treba obrniti na točko diferenciacije funkcije, torej iskanja njenega odvoda.

Če v besedilu opazite napako, jo označite in pritisnite Ctrl+Enter

In izrek o odvodu kompleksne funkcije, katerega formulacija je naslednja:

Naj ima 1) funkcija $u=\varphi (x)$ na neki točki $x_0$ odvod $u_(x)"=\varphi"(x_0)$, 2) funkcija $y=f(u)$ imajo v ustrezni točki $u_0=\varphi (x_0)$ odvod $y_(u)"=f"(u)$. Potem bo tudi kompleksna funkcija $y=f\left(\varphi (x) \right)$ v omenjeni točki imela odvod, ki je enak produktu odvodov funkcij $f(u)$ in $\varphi ( x)$:

$$ \left(f(\varphi (x))\desno)"=f_(u)"\levo(\varphi (x_0) \desno)\cdot \varphi"(x_0) $$

ali v krajšem zapisu: $y_(x)"=y_(u)"\cdot u_(x)"$.

V primerih v tem razdelku imajo vse funkcije obliko $y=f(x)$ (tj. upoštevamo samo funkcije ene spremenljivke $x$). Zato je v vseh primerih izpeljanka $y"$ vzeta glede na spremenljivko $x$. Da bi poudarili, da je izpeljanka vzeta glede na spremenljivko $x$, je namesto $y pogosto zapisano $y"_x$ "$.

Primeri št. 1, št. 2 in št. 3 opisujejo podroben postopek za iskanje odvoda kompleksnih funkcij. Primer št. 4 je namenjen popolnejšemu razumevanju izpeljane tabele in se je z njim smiselno seznaniti.

Priporočljivo je, da po študiju gradiva v primerih št. 1-3 preidete na samostojno reševanje primerov št. 5, št. 6 in št. 7. Primeri #5, #6 in #7 vsebujejo kratko rešitev, tako da lahko bralec preveri pravilnost svojega rezultata.

Primer št. 1

Poiščite odvod funkcije $y=e^(\cos x)$.

Najti moramo odvod kompleksne funkcije $y"$. Ker je $y=e^(\cos x)$, potem $y"=\left(e^(\cos x)\right)"$. Za poiščemo odvod $ \left(e^(\cos x)\right)"$ uporabimo formulo št. 6 iz tabele odvodov. Za uporabo formule št. 6 moramo upoštevati, da je v našem primeru $u=\cos x$. Nadaljnja rešitev je preprosta zamenjava izraza $\cos x$ namesto $u$ v formulo št. 6:

$$ y"=\levo(e^(\cos x) \desno)"=e^(\cos x)\cdot (\cos x)" \oznaka (1.1)$$

Zdaj moramo najti vrednost izraza $(\cos x)"$. Ponovno se obrnemo na tabelo izpeljank in iz nje izberemo formulo št. 10. Če $u=x$ nadomestimo v formulo št. 10, imamo : $(\cos x)"=-\ sin x\cdot x"$ Zdaj pa nadaljujmo enakost (1.1) in jo dopolnimo z najdenim rezultatom:

$$ y"=\levo(e^(\cos x) \desno)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Ker je $x"=1$, nadaljujemo enakost (1.2):

$$ y"=\levo(e^(\cos x) \desno)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

Torej iz enačbe (1.3) imamo: $y"=-\sin x\cdot e^(\cos x)$. Razlage in vmesne enakosti seveda običajno preskočimo, ugotovitev odvoda pa zapišemo v eno vrstico, tako kot v enačbi ( 1.3) Torej je odvod kompleksne funkcije najden, ostane le še zapisati odgovor.

Odgovori: $y"=-\sin x\cdot e^(\cos x)$.

Primer št. 2

Poiščite odvod funkcije $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

Izračunati moramo odvod $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. Za začetek omenimo, da lahko konstanto (tj. številko 9) vzamemo iz izpeljanke:

$$ y"=\levo(9\cdot \arctg^(12)(4\cdot \ln x) \desno)"=9\cdot\levo(\arctg^(12)(4\cdot \ln x) \desno)" \tag (2.1) $$

Zdaj pa pojdimo k izrazu $\left(\arctg^(12)(4\cdot \ln x) \right)"$. Za lažjo izbiro želene formule iz tabele izpeljank bom predstavil izraz v tej obliki: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Zdaj je jasno, da je treba uporabiti formulo št. 2, tj. $\levo(u^\alpha \desno)"=\alpha\cdot u^(\alpha-1)\cdot u"$. V to formulo nadomestimo $u=\arctg(4\cdot \ln x)$ in $\alpha=12$:

Če enakost (2.1) dopolnimo z dobljenim rezultatom, imamo:

$$ y"=\levo(9\cdot \arctg^(12)(4\cdot \ln x) \desno)"=9\cdot\levo(\arctg^(12)(4\cdot \ln x) \desno)"= 108\cdot\levo(\arctg(4\cdot \ln x) \desno)^(11)\cdot (\arctg(4\cdot \ln x))" \oznaka (2.2) $$

V tej situaciji pogosto pride do napake, ko reševalec v prvem koraku izbere formulo $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ namesto formule $\left(u^\ alpha \desno)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Gre za to, da mora biti na prvem mestu odvod zunanje funkcije. Da bi razumeli, katera funkcija bo zunanja glede na izraz $\arctg^(12)(4\cdot 5^x)$, si predstavljajte, da računate vrednost izraza $\arctg^(12)(4\cdot 5^ x)$ pri neki vrednosti $x$. Najprej boste izračunali vrednost $5^x$, nato rezultat pomnožili s 4 in dobili $4\cdot 5^x$. Zdaj iz tega rezultata vzamemo arktangens in dobimo $\arctg(4\cdot 5^x)$. Nato dobljeno število dvignemo na dvanajsto potenco in dobimo $\arctg^(12)(4\cdot 5^x)$. Zadnje dejanje, tj. dvig na potenco 12 bo zunanja funkcija. In iz tega je treba začeti iskati odvod, kar smo storili v enačbi (2.2).

Zdaj moramo poiskati $(\arctg(4\cdot \ln x))"$. Uporabimo formulo št. 19 tabele izpeljank in vanjo nadomestimo $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Nekoliko poenostavimo dobljeni izraz, pri čemer upoštevamo $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Enakost (2.2) bo zdaj postala:

$$ y"=\levo(9\cdot \arctg^(12)(4\cdot \ln x) \desno)"=9\cdot\levo(\arctg^(12)(4\cdot \ln x) \desno)"=\\ =108\cdot\levo(\arctg(4\cdot \ln x) \desno)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \desno)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

Še vedno je treba najti $(4\cdot \ln x)"$. Vzemimo konstanto (tj. 4) iz izpeljanke: $(4\cdot \ln x)"=4\cdot (\ln x)" $. Za iskanje $(\ln x)"$ uporabimo formulo št. 8 in vanjo nadomestimo $u=x$: $(\ln x)"=\frac(1)(x)\cdot x "$. Ker je $x"=1$, potem je $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x ) $ Če nadomestimo dobljeni rezultat v formulo (2.3), dobimo:

$$ y"=\levo(9\cdot \arctg^(12)(4\cdot \ln x) \desno)"=9\cdot\levo(\arctg^(12)(4\cdot \ln x) \desno)"=\\ =108\cdot\levo(\arctg(4\cdot \ln x) \desno)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \desno)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \desno)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)).

Naj vas spomnim, da se odvod kompleksne funkcije največkrat nahaja v eni vrstici, kot je zapisano v zadnji enačbi. Zato pri pripravi standardnih izračunov ali kontrolnega dela rešitve sploh ni treba tako podrobno opisati.

Odgovori: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Primer št. 3

Poiščite $y"$ funkcije $y=\sqrt(\sin^3(5\cdot9^x))$.

Najprej rahlo transformirajmo funkcijo $y$, izrazimo radikal (koren) kot potenco: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9 ^x) \desno)^(\frac(3)(7))$. Zdaj pa začnimo iskati izpeljanko. Ker je $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, potem:

$$ y"=\levo(\levo(\sin(5\cdot 9^x)\desno)^(\frac(3)(7))\desno)" \oznaka (3.1) $$

Uporabimo formulo št. 2 iz tabele izpeljank in vanjo nadomestimo $u=\sin(5\cdot 9^x)$ in $\alpha=\frac(3)(7)$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\desno)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Nadaljujmo enakost (3.1) z uporabo dobljenega rezultata:

$$ y"=\levo(\levo(\sin(5\cdot 9^x)\desno)^(\frac(3)(7))\desno)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Sedaj moramo poiskati $(\sin(5\cdot 9^x))"$. Za to uporabimo formulo št. 9 iz tabele izpeljank in vanjo nadomestimo $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Ko enakost (3.2) dopolnimo z dobljenim rezultatom, imamo:

$$ y"=\levo(\levo(\sin(5\cdot 9^x)\desno)^(\frac(3)(7))\desno)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \oznaka (3.3) $$

Še vedno je treba poiskati $(5\cdot 9^x)"$. Najprej vzemimo konstanto (število $5$) izven znaka izpeljanke, tj. $(5\cdot 9^x)"=5\cdot (9 ^x) "$. Če želite najti izpeljanko $(9^x)"$, uporabite formulo št. 5 iz tabele izpeljank in vanjo nadomestite $a=9$ in $u=x$: $(9^x) )"=9^x\cdot \ ln9\cdot x"$. Ker je $x"=1$, potem $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Sedaj lahko nadaljujemo enakost (3.3):

$$ y"=\levo(\levo(\sin(5\cdot 9^x)\desno)^(\frac(3)(7))\desno)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \levo(\sin(5\cdot 9^x)\desno) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Spet se lahko vrnemo od potenc k radikalom (tj. korenom) in zapišemo $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ v obliki $\ frac(1)(\levo(\sin(5\cdot 9^x)\desno)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^x)))$. Potem bo izpeljanka zapisana v tej obliki:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\desno)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).

Odgovori: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\ cdot 9^x)))$.

Primer št. 4

Pokažite, da sta formuli št. 3 in št. 4 tabele derivatov poseben primer formule št. 2 te tabele.

Formula št. 2 tabele odvodov vsebuje odvod funkcije $u^\alpha$. Če zamenjamo $\alpha=-1$ v formulo št. 2, dobimo:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\oznaka (4.1)$$

Ker je $u^(-1)=\frac(1)(u)$ in $u^(-2)=\frac(1)(u^2)$, lahko enakost (4.1) prepišemo takole: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. To je formula št. 3 tabele derivatov.

Ponovno se obrnemo na formulo št. 2 tabele derivatov. Vanj nadomestimo $\alpha=\frac(1)(2)$:

$$\levo(u^(\frac(1)(2))\desno)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\oznaka (4.2) $$

Ker je $u^(\frac(1)(2))=\sqrt(u)$ in $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1 )(2)))=\frac(1)(\sqrt(u))$, potem lahko enakost (4.2) prepišemo takole:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

Nastala enakost $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ je formula št. 4 tabele odvodov. Kot lahko vidite, sta formuli št. 3 in št. 4 tabele izpeljav pridobljeni iz formule št. 2 z zamenjavo ustrezne vrednosti $\alpha$.

Po predhodni artilerijski pripravi bodo primeri s 3-4-5 gnezditvami funkcij manj strašljivi. Naslednja dva primera se bosta komu morda zdela zapletena, a če ju boste razumeli (nekdo bo trpel), se bo skoraj vse ostalo v diferencialnem računu zdelo kot otroška šala.

Primer 2

Poiščite odvod funkcije

Kot smo že omenili, je pri iskanju derivata kompleksne funkcije najprej potrebno prav RAZUMITE svoje naložbe. V primerih, ko obstajajo dvomi, vas spominjam na uporabno tehniko: vzamemo na primer eksperimentalno vrednost "x" in poskušamo (miselno ali v osnutku) to vrednost nadomestiti z "groznim izrazom".

1) Najprej moramo izračunati izraz, kar pomeni, da je vsota najgloblja vpetost.

2) Nato morate izračunati logaritem:

4) Nato kubiramo kosinus:

5) V petem koraku razlika:

6) In končno, najbolj oddaljena funkcija je kvadratni koren:

Formula za razlikovanje kompleksne funkcije se uporabljajo v obratnem vrstnem redu, od najbolj zunanje funkcije do najbolj notranje. Odločamo se:

Zdi se brez napak:

1) Izvlecite kvadratni koren.

2) Izvedite odvod razlike z uporabo pravila

3) Odvod trojke je nič. Pri drugem členu vzamemo odvod stopnje (kub).

4) Vzemite odvod kosinusa.

6) In končno, vzamemo izpeljanko najgloblje vpetosti.

Morda se zdi pretežko, vendar to ni najbolj brutalen primer. Vzemite na primer zbirko Kuznecova in cenili boste vso lepoto in preprostost analizirane izpeljanke. Opazil sem, da podobno stvar radi dajo na izpitu, da preverijo, ali študent razume, kako najti odvod kompleksne funkcije, ali ne razume.

Naslednji primer lahko rešite sami.

Primer 3

Poiščite odvod funkcije

Namig: Najprej uporabimo pravila linearnosti in pravilo diferenciacije produkta

Celotna rešitev in odgovor na koncu lekcije.

Čas je, da se premaknete na nekaj manjšega in lepšega.
Ni nenavadno, da primer prikazuje produkt ne dveh, ampak treh funkcij. Kako najti odvod produkta treh faktorjev?

Primer 4

Poiščite odvod funkcije

Najprej pogledamo, ali je mogoče produkt treh funkcij pretvoriti v produkt dveh funkcij? Na primer, če bi imeli v produktu dva polinoma, bi lahko odprli oklepaje. Toda v obravnavanem primeru so vse funkcije drugačne: stopnja, eksponent in logaritem.

V takih primerih je potrebno zaporedno uporabite pravilo razlikovanja izdelkov dvakrat

Trik je v tem, da z "y" označimo produkt dveh funkcij: , z "ve" pa logaritem: . Zakaj je to mogoče? Ali je res - to ni produkt dveh faktorjev in pravilo ne deluje?! Nič ni zapleteno:


Zdaj je treba pravilo uporabiti drugič v oklepaj:

Lahko se tudi zvijete in postavite nekaj iz oklepajev, vendar je v tem primeru bolje pustiti odgovor točno v tej obliki - lažje ga boste preverili.

Obravnavani primer je mogoče rešiti na drugi način:

Obe rešitvi sta popolnoma enakovredni.

Primer 5

Poiščite odvod funkcije

To je primer samostojne rešitve, v vzorcu je rešen po prvi metodi.

Poglejmo podobne primere z ulomki.

Primer 6

Poiščite odvod funkcije

Tu lahko greste na več načinov:

ali takole:

Toda rešitev bo zapisana bolj strnjeno, če najprej uporabimo pravilo diferenciacije količnika , za celoten števec:

Načeloma je primer rešen in če ostane tako kot je, ne bo napaka. Toda če imate čas, je vedno priporočljivo preveriti osnutek, da vidite, ali je odgovor mogoče poenostaviti?

Zmanjšajmo izraz števca na skupni imenovalec in se znebimo trinadstropne strukture ulomka:

Pomanjkljivost dodatnih poenostavitev je, da obstaja nevarnost napake ne pri iskanju izpeljanke, temveč pri banalnih šolskih transformacijah. Po drugi strani pa učitelji nalogo pogosto zavrnejo in prosijo, naj si »spomnijo« izpeljanko.

Enostavnejši primer, ki ga lahko rešite sami:

Primer 7

Poiščite odvod funkcije

Še naprej obvladujemo metode iskanja derivata, zdaj pa bomo obravnavali tipičen primer, ko je za diferenciacijo predlagan "grozen" logaritem

V »starih« učbenikih se imenuje tudi »verižno« pravilo. Torej, če y = f (u) in u = φ (x), to je

y = f (φ (x))

    kompleksna - sestavljena funkcija (sestava funkcij) tedaj

kje , po izračunu se upošteva pri u = φ (x).



Upoštevajte, da smo tukaj vzeli "različne" kompozicije iz istih funkcij, rezultat diferenciacije pa se je seveda izkazal kot odvisen od vrstnega reda "mešanja".

Verižno pravilo se seveda razširi na sestave treh ali več funkcij. V tem primeru bodo tri ali več "členov" v "verigi", ki sestavlja izpeljanko. Tukaj je analogija z množenjem: "imamo" tabelo izpeljank; "tam" - tabela množenja; »pri nas« je verižno pravilo in »tam« je pravilo množenja v »stolpcu«. Pri izračunu takšnih "kompleksnih" izpeljank seveda niso uvedeni nobeni pomožni argumenti (u¸v itd.), ampak, ko so sami opazili število in zaporedje funkcij, vključenih v sestavo, so ustrezne povezave "nanizane" v navedenem vrstnem redu.

.

Tukaj se z "x" za pridobitev pomena "y" izvede pet operacij, to je sestava petih funkcij: "zunanja" (zadnja od njih) - eksponentna - e  ;

nato v obratnem vrstnem redu moč. (♦) 2 ;

trigonometrični sin();

umirjeno. () 3 in končno logaritemski ln.().

.

zato

Z naslednjimi primeri bomo »ubili par ptic na en mah«: vadili bomo razlikovanje kompleksnih funkcij in dodajali tabelo odvodov elementarnih funkcij. Torej:

4. Za funkcijo moči - y = x α - jo prepišemo z uporabo dobro znane "osnovne logaritemske identitete" - b=e ln b - v obliki x α = x α ln x dobimo

5. Za poljubno eksponentno funkcijo z uporabo iste tehnike, kot jo bomo imeli

6. Za poljubno logaritemsko funkcijo z uporabo dobro znane formule za prehod na novo bazo dosledno dobimo
,

7. Za diferenciacijo tangensa (kotangensa) uporabimo pravilo diferenciacije količnikov:

Za pridobitev odvodov inverznih trigonometričnih funkcij uporabimo relacijo, ki jo izpolnjujeta odvoda dveh medsebojno inverznih funkcij, to je funkcij φ (x) in f (x), povezanih z relacijami:

To je razmerje

To je iz te formule za medsebojno inverzne funkcije

in

Naj za konec povzamemo te in nekatere druge izpeljanke, ki jih prav tako enostavno dobimo, v naslednjo tabelo.

Imenujmo izraz vmesni argument, funkcijo pa zunanjo funkcijo. To niso strogi matematični koncepti, vendar pomagajo razumeti pomen koncepta kompleksne funkcije.

Stroga definicija koncepta kompleksne funkcije je:

Naj bo funkcija definirana na množici in naj bo množica vrednosti te funkcije. Naj bo množica (ali njena podmnožica) domena definicije funkcije. Vsakemu od njih določimo številko. Tako bo funkcija definirana na nizu. Imenuje se funkcijska sestava ali kompleksna funkcija.

V tej definiciji, če uporabimo našo terminologijo, je zunanja funkcija vmesni argument.

Odvod kompleksne funkcije najdemo po naslednjem pravilu:

Da bo bolj jasno, želim to pravilo zapisati takole:

V tem izrazu uporaba označuje vmesno funkcijo.

torej. Če želite najti odvod kompleksne funkcije, potrebujete

1. Ugotovi, katera funkcija je zunanja in iz tabele odvodov poišči ustrezen odvod.

2. Določite vmesni argument.

Pri tem postopku je največja težava iskanje zunanje funkcije. Za to se uporablja preprost algoritem:

A. Zapišite enačbo funkcije.

b. Predstavljajte si, da morate izračunati vrednost funkcije za neko vrednost x. To naredite tako, da to vrednost x nadomestite v funkcijsko enačbo in izvedete aritmetiko. Zadnje dejanje, ki ga naredite, je zunanja funkcija.

Na primer v funkciji

Zadnje dejanje je potenciranje.

Poiščimo odvod te funkcije. Da bi to naredili, napišemo vmesni argument