Строение животной клетки. Строение хромосом

Клетка — это основная структурная единица большинства организмов на Земле. В основе ее деления лежат два процесса — митоз и мейоз.

Что такое соматические клетки?

Так называют все клетки живых организмов, кроме половых. Все они обладают двойным набором хромосом, в отличие от тех же половых клеток, у которых одинарный набор. Из них сформированы все, за исключением вирусов, живые организмы в мире. В основе их деления лежит процесс под названием митоз.

Что такое митоз и какова его роль в природе?

Во время означенного процесса из одной клетки образуются две идентичные дочерние, с точно таким же набором хромосом, как и у материнской. Это единственный способ размножения всех одноклеточных эукариотов, также данный процесс лежит в основе регенерации тканей растений, животных и грибов. Митоз играет важнейшую роль не только в бесполом размножении, но и в половом, обеспечивая деление клеток эмбриона. Точно таким же способом делятся клетки растений, грибов и животных во время роста организма.

Что такое мейоз?

Это второй способ, с помощью которого делятся соматические клетки. Однако он несколько специфический. В процессе мейоза из одной клетки с двойным набором хромосом образовывается несколько дочерних с одинарным. Именно таким способом вырабатываются половые клетки, то есть гаметы.

Фазы митоза

Деление соматических клеток происходит в несколько этапов, у каждого из которых есть свои отличительные черты. Весь процесс длится около трех часов. Этапов насчитывается четыре, не считая интерфазы: профаза, анафаза, метафаза и телофаза. Обо всех по порядку.

Интерфаза

Это промежуток времени между делениями клетки, на котором она готовится к митозу. В этой фазе клетка развивается и проявляет обычные для нее признаки жизнедеятельности. Данный период не входит непосредственно в процесс митоза.

Профаза

Это самая длительная по времени фаза митоза. На ее протяжении увеличивается ядро клетки, хромосомы формируются в спирали. В этот период все хромосомы представляют собой две хроматиды, которые соединены центромерами — своеобразными перетяжками. Эти структуры похожи на букву Х. Затем ядерная оболочка и ядрышко разрушаются, и хромосомы переходят в цитоплазму. Центриоли клетки располагаются по ее полюсам и между собой образуют нити веретена деления, которые потом, в конце фазы, крепятся к центромерам.

Метафаза

Это следующий этап в процессе, с помощью которого делятся соматические клетки. На протяжении этой фазы хромосомы располагаются вдоль экватора клетки. Таким образом формируется метафазная пластинка. В это время хромосомы имеют очень малый размер, так как они сильно скручены в спирали. Однако их хорошо видно в микроскоп благодаря четкому расположению. Поэтому исследование хромосом клеток проводится обычно на этом этапе митоза.

Анафаза

Это самый непродолжительный этап деления клетки посредством митоза. В этот период нити веретена, образованного центриолями, начинают оттягивать центромеры хромосомы в противоположные стороны, вследствие чего происходит разделение ее на две отдельные хроматиды. Теперь в каждом полюсе клетки расположены одинаковые наборы хроматид.

Телофаза

Это последний этап митоза. На его протяжении наблюдаются процессы, противоположные тем, что происходили в трех предыдущих фазах. А именно: спирали хромосом раскручиваются, снова образуются ядерные оболочки и ядрышка. Также на этом этапе происходит непосредственно само деление: разделяется цитоплазма, и каждая дочерняя клетка получает свой набор органелл. У растений происходит еще и формирование целлюлозной стенки вокруг мембраны двух новообразованных структур.

Мейоз

Еще один процесс, в результате которого делятся соматические клетки. Он предполагает формирование гамет, то есть половых клеток с одинарным набором хромосом. Соматические клетки во время этого процесса делятся последовательно два раза. Таким образом, выделяют мейоз І и мейоз ІІ. Каждый из них состоит из фаз под такими же названиями, как и у митоза. Рассмотрим подробнее процессы, которые происходят в клетке во время различных стадий мейоза.

Мейоз І

Во время этого процесса клетка делится таким образом, что образуются две дочерние с сокращенным вдвое набором хромосом:

  1. Профаза . На этом этапе происходит интереснейший процесс — кроссинговер. Он заключается в том, что хроматиды переплетаются между собой и обмениваются отдельными участками ДНК. Вследствие этого происходит перекомбинация генетической информации клетки, что обеспечивает разнообразность организмов одного вида. Затем хроматиды разъединяются, и происходит то же, что и в профазе митоза: исчезает оболочка ядра, ядрышко и формируется веретено деления.
  2. Метафаза . В это время хромосомы выстраиваются вдоль экватора клетки, гомологичные при этом располагаются попарно.
  3. Анафаза . На этом этапе хромосомы передвигаются к разным полюсам клетки. То есть каждая пара гомологичных структур разделяется, одна из хромосом располагается в одной стороне, другая — в другой.
  4. Телофаза . Здесь происходит заново формирование ядерных мембран и ядрышек, цитоплазма и органеллы разделяются, и образовываются две дочерние клетки с одинарным набором хромосом.

Мейоз ІІ

Сразу после первого мейоза начинается второй. Профаза очень короткая. Вслед за ней наступает анафаза , на протяжении которой хромосомы занимают положение вдоль экватора, к ним крепятся нитки веретена деления. В анафазе к полюсам расходятся отдельные половины хромосом. В телофазе формируются четыре клетки с одинарным набором генетической информации. Вместе мейоз І и мейоз ІІ называются гаметогенезом.

Разнообразие клеток

Соматические клетки позвоночных животных и других организмов делятся на группы, в зависимости от своего предназначения, роли и функций тканей, которые из них состоят. В связи с этим они имеют несколько разное строение.

Виды тканей и особенности их клеток

Среди тканей животных выделяют такие разновидности: покровная, соединительная, нервная, мышечная, кровь, лимфа. Все они состоят из соматических клеток, однако немного различных по строению:


Внешне люди сильно отличаются друг от друга. Большие и маленькие, высокие и низкие, светлокожие и темнокожие... Присмотритесь к себе и своим друзьям и вы убедитесь, что каждый человек индивидуален. И все же в главном мы похожи: наши тела построены и функционируют по общим законам.

Наше тело, как и тело всех многоклеточных организмов, состоит из клеток. Клеток в организме человека многие миллиарды - это его главный структурный и функциональный элемент.

Кости, мышцы, кожа - все они построены из клеток. Клетки активно реагируют на раздражение, участвуют в обмене веществ, растут, размножаются, обладают способностью к регенерации и передаче наследственной информации.

Клетки нашего организма очень разнообразны. Они могут быть плоскими, круглыми, веретенообразными, иметь отростки. Форма зависит от положения клеток в организме и выполняемых функций. Размеры клеток тоже различны: от нескольких микрометров (малый лейкоцит) до 200 микрометров (яйцеклетка). При этом, несмотря на такое многообразие, большинство клеток имеют единый план строения: состоят из ядра и цитоплазмы, которые снаружи покрыты клеточной мембраной {оболочкой).

Ядро есть в каждой клетке, кроме эритроцитов. Оно несет наследственную информацию и регулирует образование белков. Наследственная информация обо всех признаках организма хранится в молекулах дезоксирибонуклеиновой кислоты (ДНК).

ДНК является основным компонентом хромосом. У человека в каждой неполовой (соматической) клетке их 46, а в половой клетке 23 хромосомы. Хромосомы хорошо видны только в период деления клетки. При делении клетки наследственная информация в равных количествах передается дочерним клеткам.

Снаружи ядро окружает ядерная оболочка, а внутри него находится одно или несколько ядрышек, в которых образуются рибосомы - органоиды, обеспечивающие сборку белков клетки.

Ядро погружено в цитоплазму, состоящую из гиалоплазмы (от греч. «гиалинос» - прозрачный) и находящихся в ней органоидов и включений. Гиалоплазма образует внутреннюю среду клетки, она объединяет все части клетки между собой, обеспечивает их взаимодействие.

Органоиды клетки - это постоянные клеточные структуры, выполняющие определенные функции. Познакомимся с некоторыми из них.

Эндоплазматическая сеть напоминает сложный лабиринт, образованный множеством мельчайших канальцев, пузырьков, мешочков (цистерн). В некоторых участках на ее мембранах расположены рибосомы, такую сеть называют гранулярной (зернистой). Эндоплазматическая сеть участвует в транспорте веществ в клетке. В гранулярной эндоплазматической сети образуются белки, а в гладкой (без рибосом)- животный крахмал (гликоген) и жиры.

Комплекс Гольджи представляет собой систему плоских мешочков (цистерн) и многочисленных пузырьков. Он принимает участие в накоплении и транспортировке веществ, которые образовались в других органоидах. Здесь также синтезируются сложные углеводы.

Митохондрии - органоиды, основной функцией которых является окисление органических соединений, сопровождающееся высвобождением энергии. Эта энергия идет на синтез молекул аденозинтрифосфорной кислоты (АТФ), которая служит как бы универсальным клеточным аккумулятором. Энергию, заключенную в ЛТФ, клетки затем используют на различные процессы своей жизнедеятельности: выработку тепла, передачу нервных импульсов, мышечные сокращения и многое другое.

Лизосомы, небольшие шарообразные структуры, содержат вещества, которые разрушают ненужные, утратившие свое значение или поврежденные части клетки, а также участвуют во внутриклеточном пищеварении.

Снаружи клетка покрыта тонкой (около 0,002 мкм) клеточной мембраной, которая отграничивает содержимое клетки от окружающей среды. Основная функция мембраны - защитная, но она воспринимает также и воздействия внешней для клетки среды. Мембрана не сплошная, она полупроницаема, через нее свободно проходят некоторые вещества, г. е. она выполняет и транспортную функцию. Через мембрану осуществляется и связь с соседними клетками.

Вы видите, что функции органоидов сложны и многообразны. Они играют для клетки ту же роль, что и органы для целостного организма.

Продолжительность жизни клеток нашего организма различна. Так, некоторые клетки кожи живут 7 дней, эритроциты - до 4 месяцев, а вот костные клетки - от 10 до 30 лет.

Проверьте свои знания

  1. Назовите основные органоиды клетки. Какова их роль?
  2. Какой формы бывают клетки? От чего это зависит?
  3. Какую роль играют в клетке молекулы ДНК?
  4. Сколько хромосом в половых и в соматических клетках человека?
  5. Каковы функции ядра?
  6. Расскажите о строении и роли эндоплазматической сети.
  7. Какие функции выполняет комплекс Гольджи?
  8. Почему митохондрии называют «аккумулятором» клетки?
  9. Какие органоиды принимают участие в разрушении и растворении частей клетки, утративших свое значение?

Подумайте

Почему клетку считают структурным и функциональным элемен том тела?

Клетка - структурная и функциональная единица тела человека, органоиды - постоянные клеточные структуры, выполняющие определенные функции.

Клеточная мембрана. Клетка (рис. 1.1) как живая система нуждается в поддержании определенных внутренних условий: концентрации различных веществ, температуры внутри клетки и др. Одни из этих параметров поддерживаются на неизменном уровне, так как их изменение приведет к гибели клетки, другие играют меньшее значение для сохранения ее жизнедеятельности.

Рис. 1.1.

Клеточная мембрана должна обеспечивать отграничение содержимого клетки от окружающей среды для поддержания необходимой концентрации веществ внутри клетки, в то же время она должна быть проницаемой для постоянного обмена веществ между клеткой и средой (рис. 1.2). Мембраны также ограничивают внутренние структуры клетки – органоиды (органеллы) – от цитоплазмы. Однако это не просто разделительные барьеры. Клеточные мембраны сами по себе являются важнейшим органом клетки, обеспечивающим не только ее структуру, по и многие функции. Помимо разделения клеток между собой и отграничения от внешней среды мембраны объединяют клетки в ткани, регулируют обмен между клеткой и внешней средой, сами являются местом протекания многих биохимических реакций, служат передатчиками информации между клетками.

Рис. 1.2.

По современным данным, плазматические мембраны – это липопротеиновые структуры (липопротеины – соединения белковых и жировых молекул). Липиды (жиры) спонтанно образуют двойной слой, а мембранные белки "плавают" в нем, словно острова в океане. В мембранах присутствуют несколько тысяч различных белков: структурные, переносчики, ферменты и др. Кроме того, между белковыми молекулами имеются поры, сквозь которые могут проходить некоторые вещества. К поверхности мембраны подсоединены специальные гликозильные группы, которые участвуют в процессе распознавания клеток при образовании тканей.

Разные типы мембран отличаются по своей толщине (обычно она составляет от 5 до 10 нм). По консистенции мембраны напоминают оливковое масло. Важнейшее свойство клеточной мембраны – полупроницаемость, т.е. способность пропускать только определенные вещества. Прохождение различных веществ через плазматическую мембрану необходимо для доставки питательных веществ и кислорода в клетку, вывода токсичных отходов, создания разницы концентрации отдельных микроэлементов для поддержания нервной и мышечной активности. Механизмы транспорта веществ через мембрану.

  • диффузия – газы, жирорастворимые молекулы проникают прямо через плазматическую мембрану, в том числе облегченная диффузия, когда растворимое в воде вещество проходит через мембрану по особому каналу;
  • осмос – диффузия воды через полунепроницаемые мембраны в сторону более низкой концентрации ионов;
  • активный транспорт – перенос молекул из области с меньшей концентрацией в область с большей с помощью специальных транспортных белков;
  • эндоцитоз – перенос молекул с помощью пузырьков (вакуолей), образуемых втягиванием мембраны; различают фагоцитоз (поглощение твердых частиц) и пиноцитоз (поглощение жидкостей) (рис. 1.3);

Рис. 1.3.

Экзоцитоз – процесс, обратный эндоцитозу; посредством него из клеток могут выводиться твердые частицы и жидкий секрет (рис. 1.4).

Рис. 1.4.

Диффузия и осмос не требуют дополнительной энергии; активный транспорт, эндоцитоз и экзоцитоз нуждаются в обеспечении энергией, которую клетка получает при растеплении усвоенных ею питательных веществ.

Регуляция прохождения различных веществ через плазматическую мембрану является одной из ее важнейших функций. В зависимости от внешних условий структура мембраны может изменяться: она может становиться более жидкой, активной и проницаемой. Регулятором проницаемости мембран является жироподобное вещество холестерол.

Внешняя структура клетки поддерживается более плотной структуройклеточной оболочкой. Клеточная оболочка может иметь самое различное строение (быть эластичной, иметь жесткий каркас, щетинки, усики и др.) и выполнять достаточно сложные функции.

Ядро имеется во всех клетках человеческого организма, за исключением эритроцитов. Как правило, клетка содержит только одно ядро, однако есть и исключения – например, клетки поперечнополосатых мышц содержат множество ядер. Ядро имеет шаровидную форму, его размеры колеблются от 10 до 20 мкм (рис. 1.5).

Ядро отграничено от цитоплазмы ядерной оболочкой, состоящей из двух мембран – наружной и внутренней, аналогичных клеточной мембране, и узкой щели между ними, содержащей полужидкую среду; через поры ядерной оболочки осуществляется интенсивный обмен веществ между ядром и цитоплазмой. На внешней мембране оболочки расположено множество рибосом – органоидов, синтезирующих белок.

Рис. 1.5.

Под ядерной оболочкой находится кариоплазма (ядерный сок), в которую поступают вещества из цитоплазмы. Кариоплазма содержит хромосомы (продолговатые структуры, содержащие ДНК, в которых "записана" информация о строении белков, специфичных для данной клетки, – наследственная, или генетическая, информация) и ядрышки (округлые структуры внутри ядра, в которых происходит формирование рибосом).

Совокупность хромосом, содержащихся в ядре, называют хромосомным набором. Число хромосом в соматических клетках четное – диплоидное (у человека это 44 аутосомы и 2 половые хромосомы, определяющие половую принадлежность), половые клетки, участвующие в оплодотворении, несут половинный набор (у человека 22 аутосомы и 1 половая хромосома) (рис. 1.6).

Важнейшей функцией ядра является передача генетической информации дочерним клеткам: при делении клетки ядро делится надвое, а находящаяся в нем ДНК копируется (репликация ДНК) – это позволяет каждой дочерней клетке иметь полную информацию, полученную от исходной (материнской) клетки (см. Размножение клеток).

Цитоплазма (цитозоль) – студенистое вещество, содержащее около 90% воды, в котором расположены все органоиды, содержатся истинные и коллоидные растворы питательных веществ и нерастворимые отходы метаболических процессов, протекают биохимические процессы: гликолиз, синтез жирных кислот, нуклеиновых кислот и других веществ. Органоиды в цитоплазме движутся, цитоплазма сама также совершает периодическое активное движение – цикл оз.

Клеточные структуры (органоиды , или органеллы) представляют собой "внутренние органы" клетки (табл. 1.1). Они обеспечивают процессы жизнедеятельности клетки, выработку клеткой определенных веществ (секрета, гормонов, ферментов), от их жизнедеятельности зависит общая активность тканей организма, способность выполнять специфические для данной ткани функции. Структуры клетки, как и сама клетка, проходят свои жизненные циклы: рождаются (создаются путем воспроизводства), активно функционируют, стареют и разрушаются. Большинство клеток организма способно восстанавливаться на субклеточном уровне за счет воспроизводства и обновления входящих в ее структуру органоидов.

Рис. 1.6.

Таблица 1.1

Клеточные органоиды, их строение и функции

Органоиды

Строение

Цитоплазма

Заключена в наружную мембрану, включает различные органоиды. Представлена коллоидным раствором солей и органических веществ, пронизана цитоскелетом (системой белковых нитей)

Объединяет все клеточные структуры в единую систему, обеспечивает среду для протекания биохимических реакций, обмен веществами и энергией в клетке

Наружная клеточная мембрана

Два слоя мономолекулярного белка, между которыми расположен бимолекулярный слой липидов, в липидном слое имеются отверстия – поры

Ограничивает клетку, разделяет ее с окружающей средой, обладает избирательной проницаемостью, активно регулирует обмен веществ и энергии с внешней средой, отвечает за соединение клеток в ткани, обеспечивает пиноцитоз и фагоцитоз; регулирует водный баланс клетки и выводит из нее "шлаки" – продукты жизнедеятельности

Эндоплазматическая сеть (ЭС)

Система трубочек, канальцев, цистерн, пузырьков, образованных ультрамикроскопическими мембранами, объединенная в единое целое с наружной мембраной ядерной оболочки и наружной клеточной мембраной. Гранулярная ЭС несет рибосомы, гладкая не имеет рибосом

Транспорт веществ внутри клетки и между соседними клетками; разделение клетки на секторы, в которых могут проходить различные процессы. Гранулярная ЭС участвует в синтезе белка. В каналах ЭС происходит синтез белка, жиров, транспорт АТФ

Рибосомы

Маленькие сферические органоиды, состоящие из РНК и белка

Осуществляют синтез белка

Аппарат Гольджи

Микроскопические одномембранные органеллы, состоящие из стопочки плоских цистерн, по краям которых ответвляются трубочки, отделяющие мелкие пузырьки

В пузырьках накапливаются продукты обменных процессов клетки. Упакованные в пузырьки, они поступают в цитоплазму и либо используются, либо выводятся наружу как шлаки

Лизосомы

Одномембранные органоиды, число которых зависит от жизнедеятельности клетки. В лизосомах содержатся ферменты, образованные в рибосомах

Переваривание питательных веществ. Защитная функция. Автолиз (саморастворение органелл и самой клетки в условиях пищевого или кислородного голодания)

Размножение клеток

Все клетки образуются посредством деления. Цикл жизни клетки включает две стадии: интерфазу и митоз. Во время интерфазы масса клетки увеличивается (клетка "растет"). Одни клетки (к примеру, клетки нервной ткани) остаются в этой стадии, не переходя в следующую, в других (клетках большинства тканей, способных к росту и регенерации) при увеличении массы во время интерфазы удваивается хромосомная ДНК, и клетка вступает в стадию митоза (рис. 1.7).

Митоз подразделяют на профазу (разрушается ядерная мембрана, хромосомы разъединяются и соединяются со специальными микротрубочками, которые будут направлять их движение к полюсам делящейся клетки – центриолям); метафазу (хромосомы выстраиваются по экватору делящейся клетки и окончательно расцепляются); анафазу (хромосомы перемещаются к полюсам клетки); телофазу (клетка делится надвое в экваториальной плоскости, нити веретена разрушаются, вокруг хромосом формируются ядерные мембраны). Митоз получил название бесполого деления, или клонирования: каждая дочерняя клетка получает идентичный набор хромосом и может опять продолжить рост и развитие – перейти в стадию иитерфазы. Обычно такой процесс занимает около часа.

Другой тип размножения – половой – получил название мейоза. Такая разновидность деления клеток позволяет в результате двух последовательных делений, по своему механизму близких к процессам митоза, образовать гаметы – половые клетки с половинным набором хромосом (по одной хромосоме из каждой пары). При слиянии двух родительских гамет в зиготу (оплодотворении) наследственная информация, полученная от двух родителей, объединяется и ложится в основу развития будущего организма. Случайный характер процессов расхождения хромосом при делении клетки и соединения хромосом мужских и женских гамет приводит к возникновению новых комбинаций генов и обеспечивает вариативность различных признаков биологического вида. В дальнейшем зигота делится путем митоза и развивается в самостоятельный организм, несущий признаки обоих родителей в проявленном или непроявленном виде.

Вопрос 1. Каковы функции ядра клетки?
Ядро в клетке выполняет основные функции:
1. хранение и воспроизведение наследственной информации, которая хранится в ядре в виде молекул ДНК, входящих в состав хромосом;
2. регуляция обмена веществ в клетке осуществляется благодаря тому, что в ядре содержится наследственная информация о строении клеточных белков в составе ядерных хромосом.

Вопрос 2. Какие организмы относятся к прокариотам?
Прокариоты - это организмы, клетки которых не имеют оформленного ядра. К ним относят бактерии, сине-зеленые водоросли (цианобактерии) и археи.

Вопрос 3. Как устроена ядерная оболочка?
Ядерная оболочка – отделяет содержимое ядра от цитоплазмы. Ядерная оболочка состоит из двух мембран: наружной и внутренней, которые соединяются вместе в области пор. При повышении скорости обменных процессов между ядром и цитоплазмой количество пор увеличивается, т.е. можно судить об активности ядра по количеству пор. Из ядра через ядерные поры выходят: иРНК, тРНК, субъединицы рибосом. В ядро из цитоплазмы поступают ядерные и рибосомальные белки, нуклеотиды, жиры, углеводы, АТФ, вода и ионы. Наружная ядерная оболочка соединяется с гранулярной эндоплазматической сетью. Внутренняя ядерная оболочка контактирует с кариоплазмой (ядерным соком), лишена рибосом и в некоторых местах соединяется с хроматином.

Вопрос 4. Что собой представляет хроматин?
Хроматин – это комплекс ДНК и белков, в основном гистоновых. Молекулы гистонов с ДНК образуют группы – нуклеосомы. Молекула ДНК, соединенная с нуклеосомой, образует ДНП (дезоксирибонуклеопротеид)– это наименьшая единица хромосомы. В состав хроматина входят РНК, ионы Ca2+ и Mg2+, а также фермент ДНК-полимераза, необходимый для репликации ДНК. Во время деления ядра хроматин спирализуется и становится видимым в световой микроскоп, т.е. начинают формироваться хромосомы (греч.chromo - цвет, soma - тело.).

Вопрос 5. Каковы функции ядрышек?
Ядрышки – это округлые, сильно уплотненные, не ограниченные мембраной участки ядра. Форма их, размеры и количество зависит от функционального состояния ядра. В клетке, выполняющей функцию синтеза большого количества белка, в ядре будет несколько ядрышек или они будут крупные и рыхлые, т.е. функция ядрышка – это синтез рРНК и сборка малой и большой субъединиц рибосом. В составе ядрышка находится: 80% белка, 10-15% РНК, небольшое количество ДНК и другие химические компоненты. В профазу деления клетки субъединицы рибосом через ядерные поры выходят в цитоплазму, ДНК ядрышка упаковывается на хромосомы, имеющие вторичную перетяжку или ядрышковый организатор, и соответственно, ядрышко как структура распадается и становится не видимой структурой, поэтому иногда говорят, что оно «растворяется».

Вопрос 6. Из чего состоит хромосома?
Хромосома представляет собой молекулу ДНК, соединенную с особым белком, придающим ей компактность.

Вопрос 7. Где располагаются хромосомы у бактерий?
В клетках бактерий нет оформленного ядра. Генетический аппарат бактерий представлен одной кольцевой молекулой ДНК (бактериальной хромосомой), которая присоединена в определенном месте к клеточной мембране и занимает в цитоплазме пространство, называемое нуклеоидом.

Вопрос 8. Что такое кариотип?
Кариотипом - это определенный набор хромосом, характерный для данного вида организмов. Кариотип характеризуется не только числом хромосом, но и их размерами, формой, расположением центромера.

Вопрос 9. Как называется набор хромосом в соматических клетках?
Как правило, соматические клетки содержат двойной набор хромосом, который называется диплоидным.

Вопрос 10. Какой набор хромосом в гаметах?
Гаметы содержат только по одной хромосоме каждого вида, т. е. имеют одинарный набор хромосом, который называется гаплоидным.

Вопрос 11. Какой гаплоидный набор хромосом в клетках рака, если диплоидный равен 118?
Если диплоидный набор хромосом в клетках равен 118, то гаплоидный будет в два раза меньше - 59 (118/2=59).

Вопрос 12. Может ли диплоидный набор содержать нечетное число хромосом?
Диплоидный набор хромосом может содержать нечетное количество хромосом. Существуют организмы, у которых в соматических клетках имеется только одна половая хромосома. Например, у некоторых насекомых (клопы, кузнечики) самки гомогаметны (XX), а самцы имеют только одну половую хромосому (ХО).

1. Какой формы бывают клетки? От чего это зависит?

Форма клеток нашего организма весьма разнообразна: плоские, круглые, веретенообразные, извитые, иметь один или несколько отростков или жгутиков, что зависит от расположения клеток в организме и функций, выполняемых этими клетками.

2. Назовите роль ядра; цитоплазмы; клеточной мембраны.

Роль ядра см. вопрос 3

Цитоплазма является живым содержимым клетки и состоит из органоидов, включений и гиалоплазмы. Гиалоплазма образует внутреннюю среду клетки и обеспечивает взаимодействие всех частей клетки между собой; состав гиалоплазмы определяет осмотические свойства клетки. Органеллы (эндоплазматическая сеть, комплекс Гольджи, митохондрии, лизосомы) обеспечивают нормальное функционирование клеток в частности и организма в целом (см. вопросы 7,8,9,10).

Клеточная мембрана служит внешним каркасом клетки, ограничивает клетку от внешней среды; основные функции: защитная и транспортная, также мембрана обеспечивает связь между клетками, участвует в восприятии сигналов из окружающей среды и передаче их в клетку (рецептор), участвует в построении специальных структур клетки (жгутиков, отростков и др.)

3. Каковы функции ядра? В каких клетках человека его нет?

Ядро отвечает за хранение и передачу наследственной информации в виде неизменной структуры ДНК; регуляцию всех процессов жизнедеятельности посредством системы белкового синтеза. Большинство клеток человека имеет одно ядро, встречаются и многоядерные клетки, безъядерными являются эритроциты.

4. Сколько хромосом в половых и в соматических клетках человека?

У человека в соматических клетках содержится двойной набор хромосом – 23 пары (46 хромосом); в половых - одинарный (23 хромосомы).

5. Что собой представляет цитоплазма? Какова её роль в клетке?

См. вопрос 2.

6. Объясните значение для клетки такого свойства мембраны, как полупроницаемость?

Полупроницаемость – способность живых клеток пропускать одни вещества и не пропускать другие. В клетку по градиенту концентрации проникают вода с некоторыми растворенными веществами, необходимыми для питания клеток, наружу выводятся отходы жизнедеятельности, что обеспечивает поддержание постоянства ионного и молекулярного состава в клетке.

7. Расскажите о строении и роли в клетке эндоплазматической сети.

Эндоплазматическая сеть (ЭПС) представляет собой своеобразный лабиринт из множества мельчайших канальцев, пузырьков, мешочков различной формы и размеров, стенки которых образованы элементарными биологическими мембранами. Существует 2 типа эндоплазматической сети: агранулярную (гладкую) и гранулярную (зернистую, содержащую рибосомы на поверхности каналов и полостей). ЭПС обеспечивает разделение цитоплазмы клетки на отсеки, препятствующие смешению происходящих в них химических процессов; обеспечивает транспорт веществ как внутри клетки, так и между соседними клетками. Зернистая ЭПС накапливает, изолирует для созревания и транспортирует белки, синтезированные рибосомами на ее поверхности, синтезирует мембраны клетки; гладкая ЭПС синтезирует и транспортирует липиды, сложные углеводы и стероидные гормоны, выводит из клетки ядовитые вещества.

8. Какие функции выполняет комплекс Гольджи? Как он устроен?

Комплекс Гольджи (КГ) представляет собой систему плоских мешочков (цистерн), от которых отпочковываются пузырьки, и систему мембранных трубочек, связывающих комплекс с каналами и полостями гладкой ЭПС. В цистернах КГ накапливаются продукты синтеза, распада и вещества, поступившие в клетку, а также вещества, которые выводятся из клетки. Накопленные вещества упаковываются в пузырьки и поступают в цитоплазму, которые затем либо используются на питание клетки, либо выводятся наружу.

9. Почему митохондрии называют «аккумулятором» клетки?

Основной функцией митохондрии является окисление органических веществ, сопровождающихся высвобождением энергии, которая идет на образования молекул АТФ, которая служит универсальным клеточным аккумулятором.

10. Какие органоиды принимают участие в разрушении и растворении частей клетки, утративших свое значение?

Такими органеллами являются лизосомы.

11. Придумайте и составьте схему «Строение животной клетки».

12. Вспомните, чем клетка человека отличается от клетки растения; гриба; бактерии.

В отличие от клеток растений клетки животных и человека не имеют клеточной стенки, хлоропластов, крупных вакуолей. Запасным углеводом клеток растений является крахмал, а клеток животных гликоген. Способ питания клеток растений автотрофный, а клеток животных гетеротрофный.

Клетки грибов имеют клеточную стенку из хитина, крупные вакуоли. Большинство клеток грибов являются многоядерными, в отличие от клеток животных, где большинство клеток одноядерные.

Клетки бактерий в отличие от клеток человека не имеют оформленного ядра и ядрышек, но имеет мезосомы, которые заменяют бактериям другие мембранные органеллы. В оболочке некоторых бактерий присутствует слизистая капсула, которой не бывает у клеток человека. В жгутиковых клетках человека (сперматозоидах) жгутики сложного строения, содержат микротрубочки, у бактерии жгутики простого строения. У бактерии клетки делятся бинарным делением, редко – почкованием и конъюгацией, у человека – митозом, мейозом, амитозом.

13. Почему клетку считают структурным и функциональным элементом тела?

Организм построен из большого количества клеток, каждая из которых выполняет свою особую функцию, но вместе они обеспечивают единое функционирование организма, как единого целого. Каждая клетка организма обладает основными свойствами живых организмов в целом: самовозобновление, саморегуляция и самовоспроизведение.