Слушать музыку через палец: мифы и факты о костной проводимости звука. Что такое костная проводимость звука и в каких случаях она выручает

Всем привет! Сегодня я хотел бы подробно рассказать о простой, но до сих пор для некоторых «удивительной» особенности нашего слуха и показать ввозимую нами продукцию. Речь пойдёт о костной проводимости звука.

В закладки

Два способа слышать

Говоря совсем примитивно, у человека «несколько ушей»: внутреннее, среднее и наружное. Они делятся визуально на «торчит» и «не торчит». Один из привычных способов воспринимать звук для нас - по воздуху, но есть и другие способы.

Звук способен распространяться в твёрдых телах: когда вы слышите соседей за стеной, это не значит, что дом строили кое-как, это значит, что бетон -неплохой проводник звука. Иными словами, мы можем получать звук, отправленный непосредственно к внутреннему уху, минуя воздушную проводимость. Это называется костная проводимость.

Бетховен

Считается, что самым ярким примером применения такой технологии, исторически значимым, было творчество композитора Людвига Бетховена. Если верить викиавторам, пишущим на английском, то толком неясно, чем именно Бетховен болел. Однако экспонаты в его музее намекают на то, что часть произведений «глухим» композитором была написана «через кость».

Экспонаты в музее Бетховена

Бетховен прикладывал к височной кости подобные трубки или закусывал их зубами, чтобы слышать звуки фортепиано. Достоверно утверждать, какую роль в усиление слуха сыграла именно костная проводимость, сложно, но без неё точно не обошлось.

Медики

Медицина довольно быстро открыла этот способ и на долгие годы присвоила его себе. При определённых нарушениях слуха, кондуктивной тугоухости, двусторонней артезии наружного прохода, микротии и некоторых других индивидуальных особенностях такой способ слышать, через кость, остаётся единственным.

Мальчик с микротией в наушниках Aftershokz

Долгое время проблемой оставалось то, что медицинские устройства с пассивной костной проводимостью как бы «не дотягивали» по качеству передачи звука.

Под пассивной костной проводимостью понимается «чрескожная» стимуляция, которая не требует хирургического вмешательства. Под активной - «транскожная», которая невозможна без операции. Несмотря на позитивную статистику операций, риски всё-таки были.

Имплантируемый аппарат с костной проводимостью

Операция по вживлению слуховых аппаратов с костной проводимостью проходила в несколько этапов: сперва вживлялся титановый штифт (титан в кости - открытие стоматологов, лучшая «приживаемость»). Затем какое-то время наблюдалась динамика (от месяца до полугода), потом интегрировался процессор и приёмник. Долго, дорого и относительно безопасно. Детям не рекомендуется!

Лишь в последнее десятилетия разработки в области пассивной костной проводимости позволили сделать ряд практичных, в том числе непосредственно детских слуховых устройств (ADHEAR, Oticon), которые по качеству и надёжности не уступают имплантам.

Зачем это читать, если нет проблем со слухом?

Зелёный свет на потребительском рынке для костной проводимости загорелся после представления Google Glass.

Динамик с костной проводимостью в дужке

Динамик на базе данной технологии был интегрирован в дужку очков, и многие подумали, а почему бы и нет, а как ещё? Тогда же наметились и первые лидеры: на рынке потребительских гарнитур с костной проводимостью - это компания Aftershokz, которая присутствует на отечественном рынке уже несколько лет нашими усилиями.

В первую очередь - это спортивные наушники. Основной тезис, с которым разработчики обратились к людям: костная проводимость - это способ повысить собственную безопасность во время тренировок. Фокус был направлен на велосипедистов и бегунов.

Главное преимущество таких гарнитур - они не закрывают уши, и пользователь слышит всё, что происходит вокруг, может реагировать на сигналы автомобиля, но при этом иметь музыку «на фоне» или ответить на звонок.

В дальнейшем из сугубо спортивной ниши, компания двинулась в сторону туризма, экстремального туризма, где может быть необходимость держать уши открытыми, оставаясь на связи с друзьями, коллегами, но при этом есть потребность в гарнитуре.

Что-то еще?

Везде, где нет задачи получать в конкретный момент эстетического наслаждения от музыки, использование таких гарнитур - большой плюс. Так слушать музыку безопаснее для слуха. Есть точка зрения, озвученная в учебнике «Компьютер для людей с ограниченными возможностями», что такие наушники создавались для людей, «зависимых» от музыки, чтобы глубокий бас не наносил ущерба слуху. Всё-таки наши кости куда более прочные, чем барабанные перепонки.

В городе, во время прогулок, - пожалуйста. За рулем автомобиля в качестве гарнитуры тоже можно. Просмотр сериалов, фильмов - отличное решение. Особенно для молодых родителей, которым важно не прослушать ребенка, который спит в соседней комнате. Можно послушать аудиокниги.

Также гарнитуры с костной проводимостью звука приживутся в офисе в качестве рабочего инструмента: удобно общаться по рабочим вопросам и оставаться на связи с коллегами, чтобы не прослушать позывной на обед.

Так как звук идёт не по воздуху, такую технологию "переложили" для дайверов для того, что загерметизировать костную проводимость. Используется она и в армии, где важно контролировать обстановку и принимать приказы.

Китч

Мимо не прошли юмористы от гаджетов: буквально недавно, на минувшей IFA несколько спорных проектов.

Sgnl

Браслет для часов с костной проводимостью звука, который позволит общаться по телефону с помощью пальца. Проще говоря, технологии превратит ваш палец в динамик.

ORII

Аналогичного назначения смарт-кольцо с интегрированным передатчиком на базе костной проводимости.

ZEROi

Бейсболка с полей краудфандинга, которая передаёт музыку через кости к внутреннему уху.

И целый ряд других «инновационных технологий», которые доказывают, что костная проводимость и полезный способ, и забавная особенность нашего организма.

Музыку через палец (даже через локоть) действительно слушать можно: наши кости хороший проводник, поэтому всё зависит только от мощности сигнала. Например, мощности Aftershokz хватает действительно до локтя. Вы просто прислоняете динамики к кости и через палец слушаете любимые треки. Ну а чем ближе, тем лучше звук.

Как это работает

На самом деле, всё просто. В основе гарнитур и других устройств с костной проводимостью звука лежит пьезодинамик, на него подается переменный ток в такт сигналу, и это вызывает колебания, что для нас - звук.

Самые примитивные пьезодинамики выглядят примерно так:

Наушник с костной проводимостью можно сделать за 10 минут, обладая такой пластинкой и свободным временем, Качество будет ниже среднего, но это же эксперимент.

У пьезоизлучателей есть ряд особенностей, которые тиражируются, судя по всему теми, кто редко пользовался наушниками. У них плохой звук, нет басов, плохая изоляция и так далее. Поэтому пришло время для мифов и фактов.

Мифы и факты о костной проводимости звука

Начнём со звука. Он действительно другой. Сравнивать с привычными наушниками - дело неблагодарное, так как он не хуже, не лучше - это просто другой способ передачи и восприятия.

Вероятно те, кто стремятся сравнивать звук, параллельно сравнивают и бумажные книги с электронными, и цифровые часы с аналоговыми, и всё остальное на общих основаниях. Звук в костях «затухает» быстрее, чем в воздухе, поэтому до слуха не всегда доходят низкие частоты, которые, к тому же, воспроизводят далеко не все пьезодинамики. Это правда.

Утверждение, что наушники на базе костной проводимости «не могут в басы» - это миф.

Мнение, что у всех наушников с костной проводимостью проблемы с утечкой звука - это не совсем правда. У всех наушников открытого типа такая проблема, если говорить справедливо. Утверждение, что все окружающие будут слышать, что у меня звучит - это миф.

Заявление, что такой способ небезопасен и «раздробит» кости черепа - это миф. Костная проводимость: безопасный способ восприятия звука, просто не самый привычный, на высоких громкостях ощутимы колебания (вибрация), однако сама по себе технология не опасна для человека.

Басы, утечка и Aftershokz

В отличие от большинства гарнитур на базе костной проводимости, даже внутри линейки, Trekz - лучшие по звуку. Они покрывают почти весь слышимый человеком диапазон.

Воспользовавшись «бытовыми» тестами наушников в сети, например, на YouTube , можно убедиться, что гарнитура начинает звучать между 30-35 Гц и затихает примерно на 17000. С басом в костной проводимости всё несколько сложнее: это не возможность услышать бас, а возможность его почувствовать. Глубокий бас будет отдаваться «ударами», вибрацией, и эта идея, кстати, не баг, а фича.

Ровно для того, чтобы дать возможность пользователю ощутить как бы присутствие на концерте, был создан, например, рюкзак SubPac, достаточно известный и дорогой проект.

Про утечку звука также есть что возразить. Потребительские тесты показывают, что звук неразличим для посторонних при комфортной громкости для слушателя - около половины. Например, в пригородной электричке сосед напротив не слышит то, что звучит в наушниках или не различает. Но так не везде. Даже Aftershokz шли к этому несколько лет. Сравните, как раздаёт звук первая беспроводная версия:

Первая версия беспроводных

И как звучит вторая:

Версия Aftershokz Bluez 2S с технологией LeakSlayer

В гарнитурах здорово резонировал корпус, и он был хорошо слышен окружающим. Однако позднее появилась технология LeakSlayer, которая также присутствует и в Trekz Titanium. Она заключается в том, что из специальных отверстий по бокам динамика идёт противофаза, образуя, формально «ноль звука».

Эти обратные колебания и гасят звук, который выдавал корпус раньше.

Компенсирует ли это утечку звука - безусловно. И эта находка до сих пор доступна не всем. Например, многие недорогие китайские гарнитуры по-прежнему этой особенностью не обладают. KsCat , к примеру, сегодня делает то, что Aftershokz делал несколько лет назад.

Решило ли это проблему утечки звука - нет. Наушники по-прежнему остаются наушниками открытого типа, но если сравнить их по этому параметру с другими устройствами, например, такими:

То утечка звука будет примерно на одном уровне. Некоторые пользователи формулируют претензию ещё более странно: мол, лежат на столе и всё слышать. Насколько целесообразно оценивать утечку не надетых наушников, - вопрос спорный, но тем не менее:

Другие беспроводные наушники

Модель Trekz Titanium остаётся флагманом по звуку и характеристикам изоляции, плюс первопроходцем внутри линейки в области проектирования корпуса - он гибкий и надёжный, практически неубиваемый.

Вы можете буквально завязать его в узел, но они вернутся в исходную форму. Модель имеет простое управление с вынесенными на корпус кнопкам и высокую автономию (до 7 часов непрерывного звука).

Гарнитуры давно успешно зарекомендовали себя в различных областях, оставаясь в первую очередь спортивными наушниками, которым доверяют и любители, и профессионалы. Одно время линейка была даже представлена в фирменных магазинах Apple, но это время давно миновало.

Написать

Глухота великого композитора Бетховена вызывает у школьников недоумение: как же он мог писать музыку?! Это один из самых ярких примеров того, как костная проводимость звука может помочь человеку: композитор прикладывал к голове специальные трубки, чтобы слышать звук, а мы, благодаря этой технологии, можем наслаждаться шедеврами романтического гения.

Kuaf.com

Как работает костная проводимость

Очень просто. Наша слуховая система поделена на внешнее ухо, среднее и внутреннее. Костная проводимость звука минует два канала, отправляя звуки напрямую ко внутреннему уху. Поэтому костная проводимость, к сожалению, бессильна, когда глухота человека связана с нарушением работы внутреннего уха.

Изначально технология костной проводимости была доступна только хирургически: нужен был специальный титановый имплант. Лишь последние лет десять развитие технологии пассивной костной проводимости стало набирать обороты. Она активно применяется спортсменами, дайверами, военными, водителями и офисными работниками.

Устройства костной проводимости не закрывают уши, поэтому человек может слушать музыку или общаться по телефону и при этом реагировать на окружающие звуки.

По статистике ГИБДД, лишь за 9 месяцев прошлого года и только по Москве и области на дорогах пострадали свыше 400 велосипедистов. Гарнитуры с костной проводимостью звука помогают уменьшить эту печальную цифру: велосипедист услышит сигнал автомобиля, даже если в наушниках играет музыка. Гарнитуры удобно сидят на голове, не мешают проводами и оголовьем, их можно носить с очками и шлемом.

Каким будет звук в наушниках костной проводимости

Непохожим на звук, к которому вы привыкли в наушниках обычных. Самое явное отличие - при костной проводимости басы чувствуются, а не слышатся. Основа наушников - пьезодинамик, который преобразует звук в колебания, а они, в свою очередь, на высокой громкости передают бас как вибрацию, и вы чувствуете музыку телом. Технология костной проводимости должна понравиться меломанам, которые буквально глохнут из-за густого баса.

При этом в хороших наушниках нет никаких искажений, выпадений, заиканий или хрипов - это всё та же музыка, но с вибрацией на месте глубокого баса.

Ещё один несомненный плюс: прослушивание музыки в наушниках костной проводимости считается более безопасным для слуха, так как наши кости крепче барабанных перепонок. И вопреки распространённому мнению, вибрация от наушников вам никоим образом не повредит. Закройте уши пальцами и скажите пару слов. Слышите себя? Звук собственного голоса мы воспринимаем с помощью всё той же костной проводимости. И это, кстати, объясняет, почему в записи он кажется другим.

Зачем нужны наушники костной проводимости, если вы не спортсмен

Ситуаций, когда костная проводимость очень удобна, немало:

  • вы работаете в офисе и общаетесь в Skype, слушаете музыку, но при этом вам важно слышать, о чём беседуют коллеги;
  • вы смотрите фильмы вечером, а в соседней комнате спит ребёнок;
  • вы много ездите за рулём, но вам надо отвечать на звонки;
  • вы не можете ходить по улице без музыки, но беспокоитесь за свою безопасность на дороге;
  • вы постоянно слушаете музыку или аудиокниги, но боитесь испортить слух.

Вы сами наверняка сможете вспомнить примеры, когда костная проводимость звука выручает. Кроме того, это просто очень любопытно: закройте уши пальцами, приложите к локтю наушники Aftershokz, и вы будете слышать музыку!

Какие наушники костной проводимости выбрать

Лидером на рынке наушников костной проводимости остаётся компания Aftershokz. Мы собрали несколько моделей наушников, различных по характеристикам и цене.

Aftershokz Sportz Titanium

Самая младшая модель и самая недорогая - это проводные наушники без микрофона с лёгким титановым оголовьем. Динамики проще, чем в более продвинутых моделях, и взыскательный слушатель почувствует, что низкие частоты различаются хуже.

Цена: 3 490 рублей.

Для использования в офисе или для компьютерных игр подойдут наушники с микрофоном, которые стоят чуть дороже.

Aftershokz Bluez 2S

Одна из первых по-настоящему заметных гарнитур, которая вытеснила обычные Bluez 2. Они, кстати, были достаточно успешны: одно время даже продавались в официальном магазине Apple.

Беспроводная гарнитура с пластиковым оголовьем: благородный дизайн, несколько ярких расцветок. С этой модели, можно сказать, началась и новая эра для компании - тут впервые были применены технологии, которые обеспечили высокое качество звука и отличную изоляцию.

Aftershokz Trekz Titanium

Флагман в линейке Aftershokz - модель Trekz Titanium. При её разработке компания учла все вопросы и пожелания пользователей: улучшено воспроизведение музыки, переработан микрофон, буквально заново изобретены характеристики звукоизоляции.

Доработано оголовье: теперь оно сверхпрочное и очень гибкое, его можно завязать практически в узел.

Корпус защищён от пыли, брызг и обильного пота, что делает такие гарнитуры весьма востребованными среди спортсменов. Ещё один плюс - до 7 часов непрерывной работы.

Trekz легко управляются прямо с корпуса. Одна функциональная кнопка для удобства вынесена прямо на динамик. Нажав на неё, можно ответить на звонок, остановить и снова запустить музыку.

В некоторых отзывах о гарнитурах костной проводимости пользователи жалуются на плохую звукоизоляцию: все вокруг слышат, что играет в наушниках. Такое очевидное звучание было в ранних версиях гарнитур - Bluez и Bluez 2S, частично подобный эффект сохраняется и в проводных моделях, но уже сдержаннее.

У Trekz Titanium эта проблема решена: на средней громкости, комфортной для слушателя, окружающим звуки становятся не слышны или как минимум неразличимы. Дополнительную звукоизоляцию обеспечивает более плотное прилегание к голове.

Воздушные звуковые волны от источника звука, распространяясь, по наружному слуховому проходу достигают барабанной перепонки и вызывают ее колебания, которые через систему слуховых косточек передаются на овальное окно. Смещение стремени в полость лестницы преддверия вызывает колебания перилимфы, которые через геликотрему передаются перилимфе барабанной лестницы, и происходит смещение мембраны круглого окна в сторону барабанной полости среднего уха (рис. 56).

Рис. 56. Схема распространения звуковых колебаний в улитке:

1 - наружное ухо, 2 - среднее ухо, 3 - улитка

Упругость мембраны круглого окна позволяет перилимфе смещаться между овальным и круглым окнами при воздействии звуковых волн. Колебания перилимфы верхнего канала улитки через тонкую вестибулярную мембрану передаются на эндолимфу улиткового протока. В результате перемещений перилимфы и эндолимфы приводится в движение основная мембрана с расположенным на ней кортиевым органом, что вызывает колебание волосковых клеток . Волоски этих клеток, касаясь покровной мембраны,деформируются , что является причиной возникновения возбуждения (потенциала действия) в рецепторных слуховых клетках. Таким образом, во внутреннем ухе происходит преобразование физической энергии звуковых колебаний в возбуждение слуховых клеток, возникающие нервные импульсы по волокнам слухового нерва и проводящим нервным путям поступают в подкорковые отделы, а затем – в слуховую сенсорную зону коры головного мозга. Экспериментально установлено, что в улитке при звуковом раздражении возникают переменные электрические токи, которые по своему ритму и величине полностью повторяют частоту и силу звуковых колебаний. Улитка как бы играет роль микрофона, преобразующего механические колебания в электрические потенциалы.


4. Слуховые косточки. Строение и участие в формировании слуха.

СЛУХОВЫЕ КОСТОЧКИ - комплекс из мелких косточек в среднем ухе. Находятся в барабанной полости три маленькие слуховые косточки - молоточек, наковальня и стремя. Колебания барабанной перепонки (в барабанной полости) улавливаются молоточком, усиливаютсядвижениями наковальни и передаются на стремечко,

которое соединено с овальным окном в УЛИТКЕ внутреннего уха.

1.Молоточек снабжен округлой головкой, которая при посредстве шейки, соединяется с рукояткой.

2. Наковальня, имеет тело, и два расходящихся отростка, из которых один более короткий, направлен назад и упирается в ямку, а другой - длинный отросток, идет параллельно рукоятке молоточка медиально и кзади от нее и на своем конце имеет небольшое овальное утолщение, сочленяющееся со стременем.

3. Стремя, по своей форме оправдывает свое название и состоит из маленькой головки, несущей сочленовную поверхность для наковальни и двух ножек: передней, более прямой, и задней, более изогнутой, которые соединяются с овальной пластинкой, вставленной в окно преддверия. В местах сочленений слуховых косточек между собой образуются два настоящих сустава с ограниченной подвижностью. Пластинка стремени соединяется с краями при посредстве соединительной ткани.

Слуховые косточки укреплены, кроме того, еще несколькими отдельными связками. В целом все три слуховые косточки представляют более или менее подвижную цепь, идущую поперек барабанной полости от барабанной перепонки к лабиринту. Подвижность косточек постепенно уменьшается в направлении от молоточка к стремечку, что предохраняет спиральный орган, расположенный во внутреннем ухе, от чрезмерных сотрясений и резких звуков.

Цепь косточек выполняет две функции:

1) костную проводимость звука

2) механическую передачу звуковых колебаний к овальному окну преддверия.


5. Строение внутреннего уха. Звуковой и вестибулярный анализатор. Анатомия, физиология. Ототопика.

Внутреннее ухо, или лабиринт, располагается в толще пирамиды височной кости между барабанной полостью и внутренним слуховым проходом, через который выходит из лабиринта.

Костный лабиринт состоит из: вестибулярный лабиринта, костного лабиринта, перепончатого лабиринта, улитки; преддверия; полукружных каналов.

У современного человека улитка находится впереди, а полукружные каналы сзади, между ними расположена полость неправильной формы - преддверие. Внутри костного лабиринта находится перепончатый лабиринт, который имеет точно такие же три части, но меньших размеров, а между стенками обоих лабиринтов находится небольшая щель, заполненная прозрачной жидкостью - перилимфой.

Улитка. Каждая часть внутреннего уха выполняет определенную функцию. Улитка является органом слуха: звуковые колебания, которые из наружного слухового прохода через среднее ухо попадают во внутренний слуховой проход, в виде вибрации передаются жидкости, заполняющей улитку. Внутри улитки находится основная мембрана (нижняя перепончатая стенка), на которой расположен Кортиев орган - скопление разнообразных опорных клеток и особых сенсорно-эпителиальных волосковых клеток, которые через колебания перилимфы воспринимают слуховые раздражения в диапазоне 16-20000 колебаний в секунду, преобразуют их и передают на нервные окончания VIII пары черепных нервов - преддверно-улиткового нерва; дальше нервный импульс поступает в корковый слуховой центр головного мозга.

Преддверие и полукружные каналы - органы чувства равновесия и положения тела в пространстве. Расположены в трёх взаимно перпендикулярных плоскостях и заполнены полупрозрачной студенистой жидкостью; внутри каналов находятся чувствительные волоски, погруженные в жидкость, и при малейшем перемещении тела или головы в пространстве жидкость в этих каналах смещается, надавливая на волоски и порождая импульсы в окончаниях вестибулярного нерва - в мозг мгновенно поступает информация об изменении положения тела. Работа вестибулярного аппарата позволяет человеку точно ориентироваться в пространстве при самых сложных движениях - например, прыгнув в воду с трамплина и при этом несколько раз перевернувшись в воздухе, в воде ныряльщик мгновенно узнаёт, где находится верх, а где - низ.

Различают костный и перепончатый лабиринты, причем последний лежит внутри первого. Костный лабиринт, представляет ряд мелких сообщающихся между собой полостей, стенки которых состоят из компактной кости. В нем различают три отдела: преддверие, полукружные каналы и улитку; улитка лежит спереди, медиально и несколько книзу от преддверия, а полукружные каналы - кзади, латерально и кверху от него.

Преддверие , образующее среднюю часть лабиринта, - небольшая, приблизительно овальной формы полость, сообщающаяся сзади пятью отверстиями с полукружными каналами, а спереди - более широким отверстием с каналом улитки. На латеральной стенке преддверия, обращенной к барабанной полости, имеется отверстие, занятое пластинкой стремени. Другое отверстие, затянутое находится у начала улитки. Посредством гребешка, проходящего на внутренней поверхности медиальной стенкипреддверия, полость последнего делится на два углубления, из которых заднее, соединяющееся с полукружными каналами. Под задним концом гребешка на нижней стенке преддверия находится небольшая ямка, соответствующая началу перепончатого хода улитки.

Костные полукружные каналы , - три дугообразных костных хода, располагающихся в трех взаимно перпендикулярных плоскостях. Передний полукружный канал, расположен вертикально под прямым углом к оси пирамиды височной кости, задний полукружный канал, также вертикальный, располагается почти параллельно задней поверхности пирамиды, а латеральный канал, лежит горизонтально, вдаваясь в сторону барабанной полости. У каждого канала две ножки, которые, однако, открываются в преддверии только пятью отверстиями, так как соседние концы переднего и заднего каналов соединяются в одну общую ножку. Одна из ножек каждого канала перед своим впадением в преддверие образует расширение, называемое ампулой.

Перепончатый лабиринт, лежит внутри костного и повторяет более или менее точно его очертания. Он содержит в себе периферические отделы анализаторов слуха и гравитации. Стенкиего образованы тонкой полупрозрачной соединительнотканной перепонкой. Внутри перепончатый лабиринт наполнен прозрачной жидкостью - эндолимфой.Т.К.перепончатый лабиринт несколько меньше костного, то между стенками того и другого остается промежуток - перилимфатическое пространство, наполненное перилимфой. В преддверии костного лабиринта заложены две части перепончатого лабиринта: эллиптический мешочек и сферический мешочек. Перепончатый лабиринт в области полукружных протоков подвешен на плотной стенке костного лабиринта сложной системой нитей и мембран. Этим предотвращается смещение перепончатого лабиринта при значительных движениях. Ни перилимфатическое, ни эндолимфатическое пространства «не закрыты намертво» от окружающей среды. Перилимфатическое пространство имеет связь со средним ухом через окна улитки и преддверия, которые эластичны и податливы. Эндолимфатическое пространство связано через эндолимфатический проток с эндолимфатическим мешочком, лежащим в полости черепа; он является эластичным резервуаром, который сообщается с внутренним пространством полукружных протоков и остальным лабиринтом.

Наушники костной проводимости – это устройства, которые имеют несколько иной принцип действия, чем более простые изделия. Ценовая политика таких устройств практически ничем не отличается, а иногда может быть и существенно ниже стандартных наушников. Именно из-за правильного соотношения цены и качества, а также принципа действия, устройства с костной проводимостью становятся выбором большинства спортсменов или других пользователей, предпочитающих активный образ жизни.

Человек способен воспринимать звук воздушным путём или посредством своей костной системы. И именно второй способ является для пациентов с таким заболеванием, как кондуктивная тугоухость, возможностью нормально слышать. Для этого необходимо использовать специальные медицинские приборы, пропускающие звук в обход внешнего уха. Звуковые волны доходят до пациента в виде колебаний через кость.

Но с развитием техники подобные приборы стали распространёнными и в обычной жизни многих любителей музыки. На свет появились наушники с костной проводимостью, которые необходимо прикладывать к височной области. Выполнены устройства в виде обруча, соединённого с воспроизводящим прибором посредством провода или беспроводного Bluetooth-модуля.

Принцип работы не изменился: звуковые волны трансформируются в колебания и передаются во внутреннее ухо. Пользователь при этом может наслаждаться музыкой и слышать всё, что происходит во внешнем мире.

Важно! Безопасность

Мнение о том, что наушники костной проводимости могут причинить вред человеческому организму, считается ошибочным. Оно бытовало в народе только в момент возникновения данной технологии и было обусловлено следующими предположениями:

  1. Колебания могут повредить костную структуру, особенно при длительном воздействии.
  2. Подобное преобразование звука негативно влияет на мозговую активность.

Но со временем подобные предположения были отклонены, а технология стала использоваться как возможность слышать для пациентов с врождёнными дефектами слуха. После проведения множества исследований и опытов было доказано, что опасными считаются обыкновенные наушники, звуковые волны которых негативно влияют на барабанную перепонку.

Области применения наушников

Основной разряд пользователей, которому наушники с костной проводимостью пришлись по нраву, – это спортсмены. Данные устройства имеют специальную дужку, повторяющую форму головы, поэтому даже при резких движениях они не спадают. Такая конструкция позволяет наслаждаться музыкой во время бега, велоезды, а при герметичном корпусе и в бассейне.

Также устройство с данной аудиопередачей очень удобно для владельцев автомобилей, конечно, при отсутствии автомагнитолы. Наушники с костной проводимостью позволяют слушать музыку, и одновременно окружающую среду. Такой принцип действия позволяет автомобилисту постоянно контролировать ситуацию на дороге, а в случае необходимости и разговаривать по телефону.

Технические характеристики

Технические характеристики устройств с костной проводимостью стандартны и не отличаются от других изделий, преобразующих звуковые волны. Это:

  1. Чувствительность.
  2. Диапазон воспроизводимых частот.
  3. Проводные или беспроводные.
  4. Емкостная характеристика аккумуляторной батареи.
  5. Влагозащищённый или обыкновенный корпус.
  6. Индикация.

Преимущества и недостатки

Подобные устройства имеют массу преимуществ, основным из которых является то, что пользователь слышит окружающий мир и при этом наслаждается любимой музыкой. Автомобилисты или велосипедисты не теряют концентрации, продолжая постоянно следить за ситуацией на дороге. То же можно сказать и про бегунов, ведь многие предпочитают совершать утренние пробежки по пересечённой местности.

Время автономной работы наушников достаточно продолжительное, пользователю не приходится постоянно носить с собой зарядное устройство. Также почти все модели имеют герметичный корпус, который не подвержен воздействию пыли и влаги.

Но, к сожалению, существуют и свои недостатки. Во-первых, это совершенно иное звучание, ведь звук доходит до пользователя через костную систему, что накладывает свой отпечаток на качество звучания. Также в наушниках с костной проводимостью достаточно низкое качество басов. Низкие частоты на данных устройствах воспроизводятся хуже.

Как правильно выбрать наушники

Выбор наушников с костной проводимостью следует совершать в следующей последовательности:

  1. Обратить внимание на технические характеристики, которые должны находиться минимум на среднем уровне.
  2. Лучше всего приобрести наушники с беспроводным типом соединения. Это очень практично и удобно.
  3. Также у наушников должен быть герметичный корпус, способный противостоять воздействию влаги и пыли.
  4. В описании к устройству должна присутствовать фраза: «Для спорта».

Обзор лучших

Основные технические характеристики:

  1. Тип соединения – использование Bluetooth-модуля (версии 4.1) с радиусом сигнала до 10 м.
  2. Технология качественного и герметичного корпуса, не пропускающего влагу и пыль.
  3. Источник питания – аккумуляторная батарея Li-Ion, обеспечивающая устройству работу до 240 часов в режиме ожидания. Для полного заряда достаточно 1.5 часа.
  4. В наличии имеется встроенный микрофон, посредством которого осуществляется функция голосового набора.
  5. Исправность устройства и готовность к работе отображается с помощью светодиода.
  • Высокая ёмкость аккумуляторной батареи. Даже при частом использовании достаточно одного полного заряда на несколько дней.
  • Удобная конструкция, обладающая малым весом – всего 36 г. Пользователь практически забывает, что носит наушники.
  • Можно одновременно слушать музыку и то, что происходит в окружающем мире.

  • Непостоянный сигнал Bluetooth-модуля. Устройство воспроизведения следует носить как можно ближе к наушникам.
  • Сборка не слишком высокого качества.
  • Низкое качество звучания.

Универсальное и удобное устройство, пользующееся спросом среди меломанов из-за адекватного сочетания цены и качества. Спортивные наушники AfterShokz Trekz Titanium функционируют в режиме автономной работы, так как имеют собственный источник питания. Если брать во внимание их форму и конструкцию, вывод очевиден: наушники созданы исключительно для занятия спортом, но могут использоваться и повседневно. Удобная затылочная дужка обеспечит надёжную фиксацию устройства, позволяя пользователю постоянно наслаждаться любимой музыкой.

Модель AfterShokz Trekz Titanium утвердилась в широком кругу пользователей, с уважением относящихся к активному отдыху и занятиям спортом. Средняя ценовая политика составляет 7998 рублей.

Технические характеристики:

  1. Широкий диапазон воспроизводимых частот, который составляет от 20 до 20000 Гц. Качественное сочетание как высоких, так и низких частот.
  2. Чувствительность составляет 100 дБ.
  3. Связь с воспроизводящим устройством обеспечивается посредством Bluetooth-модуля (версия 4.2). Связь на расстоянии 10 м.
  4. Энергопитание обеспечивает компактная аккумуляторная батарея, при полном заряде работа которой составляет 6 ч. Время ожидания – 20 ч, для полного заряда достаточно 2 ч.
  5. В комплекте к устройству производитель поставляет удобный футляр для перевозки и транспортировки наушников, а также кабель microUSB.
  6. Вес устройства составляет всего 30 г.
  • Модель с минимальным весом и качественно продуманным дизайном. Очень удобно носить, при резких движениях не сбиваются.
  • Управление устройством осуществляется посредством нажатия всего трёх кнопок, которые работают без нареканий.
  • 2 дополнительно установленных микрофона дают возможность не только слушать любимую музыку, но и совершать телефонные звонки.
  • Посредством использования кнопок можно начать или закончить разговор.
  • На высоком уровне громкости проступает повышенная вибрация.
  • В данной модели слишком заметна разница между звуком канальных наушников и устройств с костной проводимостью.

Ещё одна модель от известного производителя, по более высокой цене, но с улучшенным функционалом. Эргономически удобная форма модели позволяет слушать любимую музыку без отрыва от личных дел. Очень удобны при активных действиях, таких как езда на велосипеде, бег или просто быстрая ходьба. Передача звуковых колебаний осуществляется посредством костной проводимости.

Модель AfterShokz Trekz Air удобна в использовании как для спорта или активного отдыха, так и для повседневного прослушивания. Средняя ценовая политика составляет 11000 рублей.

Технические характеристики:

  1. Воспроизведение частоты в диапазоне от 20 до 20000 Гц. Качественное звучание на всех частотных уровнях.
  2. Универсальная дизайнерская форма, которая подойдёт любому пользователю.
  3. Связь с воспроизводящим устройством обеспечивается посредством стандартного mini jack 3.5 mm.
  4. Качественный и долговечный источник питания – аккумуляторная батарея Li-Ion повышенной ёмкости. Устройство функционирует на полную мощность в течение 12 часов, время ожидания, по словам производителя, составляет 1440 часов. Для зарядки аккумулятора достаточно 2 часов.
  5. В комплекте к устройству предусмотрен специальный футляр.
  • Даже с наличием провода данная модель намного легче других беспроводных наушников.
  • Качественная и надёжная сборка, а также комплектующие детали.
  • Хороший уровень звучания.
  • Отсутствие функционала в блоке, расположенном на проводе, который также требует дополнительного заряда.
  • Не поддерживает звучание на низком уровне.

Доступная ценовая политика и нормальное качество делают модель наушников с костной проводимостью AfterShokz Sportz Titanium достаточно популярной. Динамическая конструкция, возможность длительной работы, лёгкий вес – это короткий перечень положительных качеств устройства.

Модель AfterShokz Sportz Titanium выполнена в современном стиле с удобным дизайном, рассчитанным для любого пользователя. Средняя ценовая политика составляет 3493 рублей.

Технические характеристики:

  1. В корпус устройства вмонтирован микрофон для возможности совершения телефонных звонков.
  2. Водонепроницаемый корпус с повышенной герметичностью.
  3. Связь с воспроизводящим устройством обеспечивается посредством Bluetooth-модуля (версия 2.1). Радиус действия до 10 м.
  4. Собственная аккумуляторная батарея Li-Ion. Полного заряда достаточно для 240 часов работы в режиме ожидания. Для зарядки достаточно 3 ч.
  5. Отличительной стороной функционала является голосовой набор.
  • По словам пользователей, полного заряда аккумулятора достаточно для работы в течение 3-5 дней.
  • Повышенная степень защиты от влаги и пыли.
  • Недостаточное качество некоторых комплектующих деталей.
  • Микрофон функционирует на среднем уровне.

Модель, которая поменяла отношение пользователей к устройствам, передающим аудиосигнал. Обладает необходимым функционалом не только для прослушивания музыки, но и для совершения телефонных разговоров. Дизайн отличается излишней угловатостью, но тем не менее наушники удобно сидят на голове.

Средняя ценовая политика составляет 6033 рубля. Модель AfterShokz Bluez 2S пользуется спросом среди всех категорий пользователей, имеет длительный срок эксплуатации.

Технические характеристики модели:

  1. Наличие беспроводной связи с воспроизводящим устройством посредством Bluetooth-модуля серии 4.0.
  2. Ёмкость аккумуляторной батареи составляет 200 мА⋅ч.
  3. Одной из основных функций (помимо воспроизведения звука) является голосовой набор.
  4. В конструкции наушников предусмотрен микрофон.
  • Доступная цена в сочетании с хорошим качеством.
  • Выдержаны пропорции низких и высоких частот.
  • Комплектующие детали выполнены из прочных материалов, что подразумевает длительный эксплуатационный срок устройства в целом.
  • Слишком далеко расположен микрофон, из-за этого голос говорящего плохо слышен.
  • Недостаточная шумоизоляция – при высокой громкости звук проникает наружу.

Доступная модель, удобная в обращении и обладающая высоким качеством звучания. Наушники выполнены в современном стиле, форма устройства подойдёт абсолютно для любой категории пользователей.

Средняя ценовая политика составляет 4499 рублей. Сочетание стоимости и качества можно считать пропорциональным. Модель Rombica FIT X-01 имеет длительный эксплуатационный срок, идеально подходит для активных людей, уважающих спортивный образ жизни.

Технические характеристики устройства:

  1. Воспроизведение частоты происходит в диапазоне от 20 до 20000 Гц.
  2. Чувствительность устройства составляет 101 дБ.
  3. Правильно выполненный дизайн. Вес изделия составляет всего 36 г.
  4. Подключение с воспроизводящим устройством осуществляется посредством mini jack 3.5 mm.
  5. Продолжительное время работы – при полном заряде аккумуляторной батареи до 12 часов.

Модель с солидными техническими характеристиками и продолжительным сроком действия. Подойдет как для утренней пробежки или езды на велосипеде, так и для повседневного прослушивания за рулём автомобиля. Позволяют наслаждаться музыкой и одновременно слышать окружающее пространство.

Ценовая политика составляет 3999 рублей. Минимальная комплектация компенсируется долговечностью, а также качеством составляющих деталей. При бережном отношении прослужат пользователю не один год.

Название





Диапазон воспроизводимых частот
20 - 20000 Гц
20 - 20000 Гц
20 - 20000 Гц
20 - 20000 Гц
100 – 18000 Гц
20 - 20000 Гц
Чувствительность 100 дБ 100 дБ
101 дБ 100 дБ
82 дБ
101 дБ
Импеданс
32 Ом 40 Ом 32 Ом 32 Ом 32 Ом -
Вес 36 г
30 г
36 г
41 г
- 36 г
Цена от 7700 руб. от 11000 руб. от 3350 руб. от 7000 руб. от 4000 руб. от 3900 руб.
Где купить

На основной мембране среднего хода улитки имеется звуковоспринимающий аппарат - спиральный орган. В его состав входят рецепторные волосковые клетки, колебания которых преобразуются в нервные импульсы, распространяющиеся по волокнам слухового нерва и поступают в височную долю коры большого мозга. Нейроны височной доли коры большого мозга приходят в состояние возбуждения, и возникает ощущение звука. Так осуществляется воздушная проводимость звука.

При воздушной проводимости звука человек способен воспринимать звуки в очень широком диапазоне - от 16 до 20 000 колебаний в 1 с.

Костная проводимость звука осуществляется через кости черепа. Звуковые колебания хорошо проводятся костями черепа, передаются сразу на перилимфу верхнего и нижнего ходов улитки внутреннего уха, а затем - на эндолимфу среднего хода. Происходит колебание основной мембраны с волосковыми клетками, в результате чего они возбуждаются, и возникшие нервные импульсы в дальнейшем передаются к нейронам головного мозга.

Воздушная проводимость звука выражена лучше, чем костная

Исследование костной проводимости каждого уха в отдельности затруднено, так как звуковые волны распространяются по всему черепу при наложении камертона на любом его участке. Поэтому некоторые авторы считают целесообразным устанавливать камертон не на область сосцевидных отростков, а на срединной линии черепа. При этом оба уха ставятся в равноценные условия.

Чтобы исследование производилось всегда в одних и тех же условиях, сила удара должна быть максимальной (для получения наибольшей длительности звучания камертона). Нажим камертона на кожу головы должен быть достаточно сильным.

Исследование костной проводимости обычно производится при открытых ушах больного; на полученные при этом результаты оказывает маскирующее влияние шумовое окружение и восприятие колебаний камертона через воздух. Чтобы избежать таких помех, Г. И. Гринберг сконструировал специально устроенные боксы - загораживатели ушей, которые представляют собой деревянные ящички, обвернутые снаружи и изнутри ватой.

В норме костная проводимость короче воздушной, так как звуковые волны встречают в костной ткани более сильное сопротивление, на что уходит часть звуковой энергии.

В начале исследования проводят три опыта: Вебера, Ринне и Швабаха.

1. Опыт Ринне заключается в сравнении воздушной и костной проводимости. Звучащий камертон С128 ставят на сосцевидный отросток исследуемого и, включив секундомер, замечают, сколько времени он звучал. По прекращении звучания на сосцевидном отростке подносят камертон к отверстию слухового прохода. У здорового человека проводимость через воздух больше проводимости через кость - это обозначают как «положительный опыт Ринне». При наличии же поражения в среднем ухе или вообще звукопроводящего аппарата опыт Ринне может быть отрицательным, т. е. звучание с кости будет продолжительнее звучания через воздух; обычно это указывает на заболевание звукопроводящего аппарата.


2. Опыт Вебера производится так. Звучащий камертон помещают на темя больного и спрашивают его, в каком ухе он слышит звучание. При здоровом состоянии ушей исследуемый слышит звучание в голове, не относя звук ни к одному из ушей. При нарушении звукопроводящего аппарата звук слышится в больном ухе, при нарушении звуковоспринимающего аппарата он слышен в здоровом ухе. Известно несколько попыток дать объяснение усилению костной проводимости при заболевании среднего уха. Некоторые указывают, что при здоровом состоянии ушей звуковые волны от звучащего камертона, беспрепятственно распространяясь по черепу, как бы выходят через уши в окружающую среду и не задерживаются в каком-либо ухе. При наличии препятствия в виде воспалительного процесса среднего уха или инородного тела (серная пробка) в слуховом проходе звуковые волны, отражаясь от препятствия, как бы снова ударяют в звуковоспринимающий аппарат внутреннего уха и звучат в больном ухе. При поражении же звуковоспринимающего аппарата звук может появиться только в здоровом ухе.
Так, Бецольд считает, что при заболеваниях звукопроводящего аппарата ограничение движений слуховых косточек создает условия для худшей передачи через воздух, чем через кость.

Г. Г. Куликовский, исследуя слуховую функцию больных в звуконепроницаемой камере, зарегистрировал незначительное укорочение костной проводимости при поражении звукопроводящего аппарата. Он считает, что наблюдающееся в обычных условиях исследования слуха удлинение костной проводимости у этого рода больных зависит от неблагоприятных в акустическом отношении условий восприятия звука.

При поражении мозга и его оболочек латеризации звука в опыте Вебера не наблюдается, если при этом нет нарушения слуховой функции.

3. Опыт Швабаха состоит в определении костной проводимости исследуемого путем сравнения с костной проводимостью здорового человека. С. этой целью звучащий камертон ставят на темя исследуемого и замечают время звучания. Получив на ряде здоровых людей длительность звучания камертона С128 на темени, сравнивают эту цифру с полученной у исследуемого и записывают в виде дроби: числитель - цифра, полученная у больного, знаменатель - цифра среднего звучания у ряда здоровых людей, например 15"/25". Эта дробь сразу укажет на состояние костной проводимости у данного больного - нормальная, удлиненная или укороченная. При нарушениях в проводящих сферах в спинномозговой жидкости, в оболочках и самих тканях мозга костная проводимость обычно укорочена. В редких случаях она удлинена - это чаще бывает при поражении в диэнцефальной области. Также она удлинена при отосклерозе, что отличает это заболевание от неврита слухового нерва. Механизм этих изменений еще не выяснен.

Опыт Желле (Gelle) состоит в следующем. К темени приставляют звучащий камертон и одновременно производят сгущение воздуха в наружном слуховом проходе резиновым баллоном - больной ощущает в этот момент ослабление звука, вызванное вдавлением стремени в нишу овального окна и вследствие этого повышением внутрилабиринтного давления. В случае анкилоза стремечка изменения звука не происходит, так же как не происходит повышения внутрилабиринтного давления. Этот опыт дает возможность диагностировать анкилоз стремечка. Но может случиться, что даже при нормально подвижном стремени сгущение воздуха в слуховом проходе не вызовет изменения звучания.