Реологические свойства крови и других биологических жидкостей. Реологические свойства крови и их нарушения при интенсивной терапии


0

Основной характеристикой крови является ее вязкость, которая в подразделяется на кажущуюся и кессоновскую (динамическую):

  • Кажущаяся вязкость крови . Она определяется отношением силы сдвига и скорости сдвига, измеряется в сантипуазах (спз) и характеризует неньютоновское поведение крови. Зависит от состояния , главным образом эритроцитов и тромбоцитов.
  • Кессоновская (динамическая) вязкость крови . Она определяется в условиях полного диспергирования крови и зависит от белкового состава плазмы. Измеряется в сантипуазах (спз).

К факторам, больше всего влияющим на вязкость крови, относятся:

  • температура и ,
  • гематокрит,
  • количество в плазме высокомолекулярных белков,
  • степень агрегации эритроцитов и ее обратимость,
  • характеристики сдвига.

Предел текучести крови . Он показывает, какое минимальное усилие необходимо приложить, чтобы сдвинуть один слой, крови относительно другого (измеряется в дн / см 2).

Коэффициент агрегации . Он свидетельствует о силе сцепления клеток крови, то есть о прочности агрегатов и (измеряется в дн / см 2).

Все эти вышеперечисленные параметры вязкости крови определяются с помощью соосно-цилиндрического вискозиметра со свободно плавающим внутренним цилиндром системы В.Н. Захарченко, позволяющим сделать модель и построить кривую течения крови в широком диапазоне напряжений сдвига.

Косвенными показателями вязкости крови является величина гематокрита, число эритроцитов, уровень фибриногена и глобулиновых фракций белка, уровень общих липидов и их спектр в плазме, а также содержание сахара в крови. При определенных заболеваниях, например при варикозе у мужчин , как правило этих показателей хватает для оценки вязкости и выставления показания к назначению .

Степень агрегации эритроцитов - определяется с помощью калориметра - нефелометра и выражается в единицах оптической плотности (или в процентах).

Степень агрегации тромбоцитов - (индуцированной АДФ) определяется с помощью агрегометра типа «Elvi-840» (Англия), выражается в единицах оптической плотности (или в процентах).


Гемореология - наука, изучающая поведение крови при течении (в по­токе), то есть свойства потока крови и ее компонентов, а также реологию структур клеточной мембраны форменных элементов крови, прежде всœего эритроцитов.

Реологические свойства крови определяются вязкостью цельной крови и ее плазмы, способностью эритроцитов к агрегации и деформации их мембран.

Кровь представляет собой негомогенную вязкую жидкость. Ее негомогенность обусловлена суспензированными в ней клетками, обладающими определœенными способностями к деформации и агрегации.

В нормальных физиологических условиях в ламинарном кровотоке жидкость движется слоями, параллельными стенке сосуда. Вязкость крови, как и любой жидкости, определяется феноменом трения между сосœедними слоями, в результате которого слои, находящиеся возле сосудистой стенки, движутся мед­леннее, чем таковые в центре кровотока. Это приводит к формированию параболического профиля скорости, неодинакового при систоле и диастоле сердца.

В связи с указанным, величина внутреннего трения или свойство жидкости оказывать сопротивление при перемещении слоев принято называть вязкостью . Единица измерения вязкости - пуаз.

Из этого определœения строго следует, что чем больше вязкость, тем больше должна быть сила напряжения, необходимая для создания коэффи­циента трения или движения потока.

В простых жидкостях, чем больше сила, приложенная к ним, тем больше скорость, то есть сила напряжения пропорциональна коэффициенту трения, а вязкость жидкости остается величиной постоянной.

Основными факторами , которые определяют вязкость цельной крови являются:

1) агрегация и деформируемость эритроцитов; 2) величина гематокрита - повышение показателя гематокрита͵ как правило, сопровождается увеличением вязкости крови; 3) концентрация фибриногена, растворимых комплексов фибринмономера и продуктов деградации фибри­на/фибриногена - повышение их содержания в крови увеличивает ее вяз­кость; 4) соотношение альбумин/фибриноген и соотношение альбу­мин/глобулин - снижение данных соотношений сопровождается повышением вязкости крови; 5) содержание циркулирующих иммунных комплек­сов - при повышении их уровня в крови вязкость возрастает; 6) геометрия сосудистого русла.

При этом кровь не имеет фиксированной вязкости, поскольку является «неньютоновской» (несжимаемой) жидкостью, что определяется её негомогенностью за счет суспензирования в ней форменных элементов, которые изменяют картину течения жидкой фазы (плазмы) крови, искривляя и запу­тывая линии тока. Вместе с тем, при низких значениях коэффициента тре­ния форменные элементы крови образуют агрегаты («монетные столби­ки») и, напротив, при высоких значениях коэффициента трения - де­формируются в потоке. Интересно отметить также еще одну особенность распределœения клеточных элементов в потоке. Указанный выше градиент скорости в ламинарном потоке крови (формирующий параболический про­филь) создает градиент давления: в центральных слоях потока оно ниже, чем в периферических, что обусловливает тенденцию к перемещению клеток к центру.

Агрегация эритроцитов - способность эритроцитов создавать в цель­ной крови «монетные столбики» и их трехмерные конгломераты. Агрегация эритроцитов зависит от условий кровотока, состояния и состава крови и плазмы и непосредственно от самих эритроцитов.

Движущаяся кровь содержит как одиночные эритроциты, так и агрегаты. Среди агрегатов имеются отдельные цепочки эритроцитов («монетные стол­бики») и цепочки в виде выростов. С ускорением скорости потока крови раз­мер агрегатов уменьшается.

Для агрегации эритроцитов необходим фибриноген или другой высокомолекулярный белок или полисахарид, адсорбция которых на мем­бране этих клеток приводит к образованию мостиков между эритроцитами. В «монетных столбиках» эритроциты располагаются параллельно друг другу на постоянном межклеточном расстоянии (25 нм для фибриногена). Умень­шению этого расстояния препятствует сила электростатического отталкива­ния, возникающая при взаимодействии одноименных зарядов мембраны эритроцитов. Увеличению расстояния препятствуют мостики - молекулы фибриногена. Прочность образовавшихся агрегатов прямо пропорциональна концентрации фибриногена или высокомолекулярного агреганта.

Агрегация эритроцитов обратима: агрегаты клеток способны деформироваться и разрушаться при достижении определœенной величины сдвига. При выраженных нарушениях нередко развивается сладж - генерализован­ное нарушение микроциркуляции, вызванное патологической агрегацией эритроцитов, как правило, сочетающейся с повышением гидродинамиче­ской прочности эритроцитарных агрегатов.

Агрегация эритроцитов, в основном, зависит от следующих факторов:

1)ионного состава среды: при повышении общего осмотического давления плазмы эритроциты сморщиваются и утрачивают способность к агрегации;

2)поверхностно-активных веществ, изменяющих поверхностный заряд, и их влияние может быть различным; 3) концентрации фибриногена и иммуноглобулинов; 4) контакта с инородными поверхностями, как правило, сопровождается нарушением нормальной агрегации эритроцитов.

Суммарный объем эритроцитов примерно в 50 раз превышает объем лейкоцитов и тромбоцитов, в связи с чем реологическое поведение крови в крупных сосудах определяет их концентрация и структурно-функциональные свой­ства. К ним относятся следующие: эритроциты должны значительно деформи­роваться, чтобы не быть разрушенными при высоких скоростях кровотока в аорте и магистральных артериях, а также при преодолении капиллярного рус­ла, так как диаметр эритроцитов больше, чем капилляра. Решающее значение при этом имеют физические свойства мембраны эритроцитов, то есть ее спо­собности к деформации.

Деформируемость эритроцитов - это способность эритроцитов деформироваться в сдвиговом потоке, при прохождения через капилляры и поры, способность к плотной упаковке.

Основными факторами , от которых зависит деформируемость эритроцитов, являются: 1) осмотическое давление окружающей среды (плазмы крови); 2) соотношение внутриклеточного кальция и магния, концен­трация АТФ; 3) продолжительность и интенсивность приложенных к эритроциту внешних воздействий (механических и химических), меняющих липидный состав мембраны или нарушающих структуру спектриновой сети; 4) состояние цитоскелœета эритроцита͵ в состав которого входит спектрин; 5) вязкость внутриклеточного содержимого эритроцитов в зависимости от концентрации и свойств гемоглобина.

В настоящее время проблема микроциркуляции привлекает большое внимание теоретиков и клиницистов. К сожалению, накопленные знания в этой области не получили пока должного применения в практической деятельности врача из-за отсутствия надежных и доступных методов диагностики. Однако без понимания основных закономерностей тканевой циркуляции и метаболизма не­возможно правильно использовать современные средства инфузионной терапии.

Система микроциркуляции играет исключительно важ­ную роль в обеспечении тканей кровью. Это происходит в основном за счет реакции вазомоции, которая осуществля­ется вазодилататорами и вазоконстрикторами в ответ на изменение метаболизма тканей. Капиллярная сеть составля­ет 90% кровеносной системы, но 60-80% ее остается в недеятельном состоянии.

Микроциркуляционная система образует замкнутый кровоток между артериями и венами (рис. 3). Она состоит из артерпол (диаметр 30-40 мкм), которые заканчиваются терминальными артериолами (20-30 мкм), разделяющими­ся на множество метартериол и прекапилляров (20-30 мкм). Далее под углом, близким к 90°, расходятся ригидные трубки, лишенные мышечной оболочки, т.е. истинные капилляры (2-10 мкм).


Рис. 3. Упрощенная схема аспределения сосудов всистеме микроциркуляцин 1 - артерия; 2 - термиальная артерия; 3 - артеррола; 4 - терминальная артериола; 5 - метартерила; 6 - прекапилляр с мышечным жомом (сфинктером); 7 - капилляр; 8 - собирательная венула; 9 - венула; 10 - вена; 11 - основной канал (центральный ствол); 12 - артериоло-венулярныи шунт.

Метартериолы на уровне прекапилляров имеют мы­шечные жомы, регулирующие поступление крови в капиллярное русло и в то же время создающие необходимое для работы сердца периферическое сопротивление. Прекапилляры являются основным регулирующим звеном микро­циркуляции, обеспечивающим нормальную функцию макро­циркуляции и транскапиллярного обмена. Роль прекапилляров как регуляторов микроциркуляции особенно важна при различных нарушениях волемии, когда от состояния тран­скапиллярного обмена зависит уровень ОЦК.

Продолжение метартериол образует основной канал (центральный ствол), который переходит в венозную систе­му. Сюда же вливаются собирательные вены, отходящие от венозного отдела капилляров. Они образуют превенулы, имеющие мышечные элементы и способные перекрывать ток крови из капилляров. Превенулы собираются в венулы и образуют вену.

Между артериолами и венулами существует мос­тик - артериоло-венозный шунт, который активно учас­твует в регуляции кровотока через микрососуды.

Структура кровотока. Кровоток в системе микроцирку­ляции имеет определенную структуру, которая определяется прежде всего скоростью движения крови. В центре кровото­ка, создавая осевую линию, располагаются эритроциты, которые вместе с плазмой движутся один за другим с определенным интервалом. Этот поток эритроцитов созда­ет ось, вокруг которой располагаются другие клетки - лей­коциты и тромбоциты. Эритроцитарный ток имеет наи­большую скорость продвижения. Тромбоциты и лейкоциты, расположенные вдоль стенки сосуда, движутся медленнее. Расположение составных частей крови довольно опреде­ленное и при нормальной скорости кровотока не меняется.



Непосредственно в истинных капиллярах ток крови иной, так как диаметр капилляров (2-10 мкм) меньше диаметра эритроцитов (7-8 мкм). В этих сосудах весь просвет занимают в основном эритроциты, которые приобретают вытянутую конфигурацию в соответствии с просветом капилляра. Пристеночный слой плазмы сохранен. Он необходим как смазка для скольжения эритроцита. Плазма сохраняет также электрический потенциал мембраны эрит­роцита и ее биохимические свойства, от которых зависит эластичность самой мембраны. В капилляре ток крови имеет ламинарный характер, его скорость весьма низ­кая - 0,01-0,04 см/с при артериальном давлении 2-4 кПа (15-30 мм рт. ст.) .

Реологические свойства крови. Реология - наука о теку­чести жидких сред. Она изучает в основном ламинарные потоки, которые зависят от взаимосвязи сил инерции и вязкости.

Вода имеет наименьшую вязкость, позволяющую ей течь в любых условиях, независимо от скорости потока и темпе­ратурного фактора. Неньютоновские жидкости, к которым относится кровь, этим законам не подчиняются. Вязкость воды - величина постоянная. Вязкость крови зависит от ряда физико-химических показателей и варьирует в широ­ких пределах.

В зависимости от диаметра сосуда меняются вязкость и текучесть крови. Число Рейнольдса отражает обратную связь между вязкостью среды и ее текучестью с учетом линейных сил инерции и диаметра сосуда. Микрососуды диаметром не более 30-35 мкм оказывают положительное влияние на вязкость протекающей в них крови и текучесть ее по мере проникновения в более узкие капилляры повыша­ется. Это особенно выражено в капиллярах, имеющих в поперечнике 7-8 мкм. Однако в более мелких капиллярах вязкость возрастает.

Кровь находится в постоянном движении. Это ее основная характеристика, ее функция. По мере увеличения скорости кровотока вязкость крови снижается и, наоборот, при замедлении кровотока увеличивается. Однако имеется и обратная зависимость: скорость кровотока обусловлива­ется вязкостью. Для понимания этого чисто реологического эффекта следует рассмотреть показатель вязкости крови, который представляет собой отношение сдвигающего нап­ряжения к скорости сдвига.

Ток крови состоит из слоев жидкости, которые движутся в нем параллельно, и каждый из них находится под воздействием силы, определяющей сдвиг («сдвигающее напряжение») одного слоя в отношении другого. Эту силу создает систолическое артериальное давление.

На вязкость крови определенное влияние оказывает концентрация содержащихся в ней ингредиентов - эритро­цитов, ядерных клеток, белков жирных кислот и т.д.

Эритроциты имеют внутреннюю вязкость, которая определяется вязкостью содержащегося в них гемоглобина. Внутренняя вязкость эритроцита может меняться в больших пределах, от чего зависит его способность проникать в более узкие капилляры и принимать вытянутую форму (тикситропия). В основном эти свойства эритроцита обусловливаются содержанием в нем фосфорных фракций, в частности АТФ. Гемолиз эритроцитов с выходом гемоглобина в плазму повышает вязкость последней в 3 раза.

Для характеристики вязкости крови белки имеют исключительно важное значение. Выявлена прямая зависи­мость вязкости крови от концентрации белков крови, особенно а 1 -, а 2 -, бета- и гамма-глобулинов, а также фибриногена. Реологически активную роль играет альбумин.

В число других факторов, активно влияющих на вязкость крови, входят жирные кислоты, углекислота. В норме вязкость крови составляет в среднем 4-5 сП (сантипуаз).

Вязкость крови, как правило, повышена при шоке (травматический, геморрагический, ожоговый, токсический, кардиогенный и т.д.), обезвоживании организма, эритро­цитемии и ряде других заболеваний. При всех этих состояниях в первую очередь страдает микроциркуляция.

Для определения вязкости существуют вискозиметры капиллярного типа (конструкции Освальда). Однако они не отвечают требованию определения вязкости движущейся крови. В связи с этим в настоящее время конструируются и используются вискозиметры, представляющие собой два цилиндра разного диаметра, вращающиеся на одной оси; в просвете между ними циркулирует кровь. Вязкость такой крови должна отражать вязкость крови, циркулирующей в сосудах организма больного.

Наиболее тяжелое нарушение структуры капиллярного кровотока, текучести и вязкости крови происходит вследствие агрегации эритроцитов, т.е. склеивания красных клеток между собой с образованием «монетных столбиков» [Чижевский А.Л., 1959]. Этот процесс не сопровождается гемолизом эритроцитов, как при агглютинации иммунобиологической природы.

Механизм агрегации эритроцитов может быть связан с плазменными, эритроцитными или гемодинамическими факторами.

Из числа плазменных факторов основную роль играют белки, особенно с высокой молекулярной массой, нарушаю­щие коэффициент соотношения альбумина и глобулинов. Высокой агрегационной способностью обладают а 1 -, а 2 - и бета-глобулиновые фракции, а также фибриноген.

К нарушениям свойств эритроцитов относится измене­ние их объема, внутренней вязкости с потерей эластичности мембраны и способности проникать в капиллярное русло и т.д.

Замедление скорости кровотока часто связано со снижением скорости сдвига, т.е. имеет место в тех случаях, когда падает артериальное давление. Агрегация эритроци­тов наблюдается, как правило, при всех видах шока и интоксикации, а также при массивных гемотрансфузиях и неадекватном искусственном кровообращении [Рудаев Я.А. и др., 1972; Соловьев Г.М. и др., 1973; Gelin L. Е.,1963, и др.].

Генерализованная агрегация эритроцитов проявляется феноменом «сладжа». Название этому феномену предложил М.Н. Knisely, «sludging», по-английски «топь», «грязь». Агрегаты эритроцитов подвергаются резорбции в ретикуло-эндотелиальной системе. Этот феномен всегда обусловлива­ет тяжелый прогноз. Необходимо скорейшее применение дезагрегационной терапии с помощью низкомолекулярных растворов декстрана или альбумина.

Развитие «сладжа» у больных может сопровождаться весьма обманчивым порозовением (или покраснением) кожи за счет скопления секвестрированных эритроцитов в не­функционирующих подкожных капиллярах. Эта клиническая картина «сладжа», т.е. последней степени развития агрега­ции эритроцитов и нарушения капиллярного кровотока, описана L.Е. Gelin в 1963 г. под названием «красный шок» («red shock»). Состояние больного при этом крайне тяжелое и даже безнадежное, если не приняты достаточно интенсив­ные меры.

Курс лекций по реаниматологии и интенсивной терапии Владимир Владимирович Спас

Реологические свойства крови.

Реологические свойства крови.

Кровь – суспензия клеток и частиц, взвешенных в коллоидах плазмы. Это типично неньютоновская жидкость, вязкость которой, в отличие от ньютоновской, в различных частях системы кровообращения различается в сотни раз, в зависимости от изменения скорости кровотока.

Для вязкостных свойств крови имеет значение белковый состав плазмы. Так, альбумины снижают вязкость и способность клеток агрегации, тогда как глобулины действуют противоположно. Особенно активен в повышении вязкости и наклонности клеток к агрегации фибриноген, уровень которого меняется при любых стрессовых состояниях. Гиперлипидемия и гиперхолестеринемия также способствуют нарушению реологических свойств крови.

Гематокрит – один из важных показателей, связанных с вязкостью крови. Чем выше гематокрит, тем больше вязкость крови и хуже ее реологические свойства. Геморрагия, гемодилюция и, наоборот, плазмопотеря и дегидратация значительно отражаются на реологических свойствах крови. Поэтому, например, управляемая гемодилюция является важным средством профилактики реологических расстройств при оперативных вмешательствах. При гипотермии вязкость крови возрастает в 1,5 раза по сравнению с таковой при 37 С, но, если снизить гематокрит с 40% до 20%, то при таком перепаде температур вязкость не изменится. Гиперкапния повышает вязкость крови, поэтому она в венозной крови меньше, чем в артериальной. При снижении рН крови на 0,5 (при высоком гематокрите) вязкость крови увеличивается втрое.

Из книги Нормальная физиология: конспект лекций автора Светлана Сергеевна Фирсова

2. Понятие о системе крови, ее функции и значение. Физико-химические свойства крови Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя:1) периферическую (циркулирующую и депонированную) кровь;2) органы

Из книги Медицинская физика автора Вера Александровна Подколзина

ЛЕКЦИЯ № 17. Физиология крови. Иммунология крови 1. Иммунологические основы определения группы крови Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов –

автора Марина Геннадиевна Дрангой

Из книги Общая хирургия автора Павел Николаевич Мишинькин

52. Гомеостаз и оргуинохимические свойства крови Гомеостаз представляет собой совокупность жидкостей организма, омывающих все органы и ткани и принимающих участие в обменных процессах, и включает плазму крови, лимфу, межтканевую, синовиальную и цереброспинальную

Из книги Пропедевтика внутренних болезней: конспект лекций автора А. Ю. Яковлева

17. Переливание крови. Групповая принадлежность крови Гемотрансфузия является одним из часто и эффективно применяющихся способов при лечении хирургических больных. Необходимость переливания крови возникает в разнообразных ситуациях.Наиболее частой из них является

Из книги Пропедевтика детских болезней: конспект лекций автора О. В. Осипова

3. Исследование артериального пульса. Свойства пульса в норме и патологии (изменение ритма, частоты, наполнения, напряжения, формы волны, свойства сосудистой стенки) Пульс представляет собой колебания стенок артериальных сосудов, связанные с поступлением во время

Из книги Общая хирургия: конспект лекций автора Павел Николаевич Мишинькин

ЛЕКЦИЯ № 14. Особенности периферической крови у детей. Общий анализ крови 1. Особенности периферической крови у детей раннего возраста Состав периферической крови в первые дни после рождения значительно изменяется. Сразу после рождения красная кровь содержит

Из книги Судебная медицина. Шпаргалка автора В. В. Баталина

ЛЕКЦИЯ № 9. Переливание крови и ее компонентов. Особенности гемотрансфузионной терапии. Групповая принадлежность крови 1. Переливание крови. Общие вопросы гемотрансфузии Гемотрансфузия является одним из часто и эффективно применяющихся способов при лечении

Из книги Всё, что нужно знать о своих анализах. Самостоятельная диагностика и контроль за состоянием здоровья автора Ирина Станиславовна Пигулевская

ЛЕКЦИЯ № 10. Переливание крови и ее компонентов. Оценка совместимости крови донора и реципиента 1. Оценка результатов, полученных при исследовании крови на принадлежность к группе по системе АВО Если гемагглютинация происходит в капле с сыворотками I (О), III (В), но не

Из книги Бахчевые культуры. Сажаем, выращиваем, заготавливаем, лечимся автора Николай Михайлович Звонарев

53. Установление наличия крови на вещественных доказательствах. Судебно-медицинское исследование крови Установление наличия крови. Пробы на кровь делятся на две большие группы: предварительные (ориентировочные) и достоверные (доказательные).Предварительных проб

Из книги Восстановление щитовидной железы Руководство для пациентов автора Андрей Валерьевич Ушаков

Клинический анализ крови (общий анализ крови) Один из самых часто применяемых анализов крови для диагностики различных заболеваний. Общий анализ крови показывает: количество эритроцитов и содержание гемоглобина, скорость оседания эритроцитов (СОЭ), количество

Из книги Учимся понимать свои анализы автора Елена В. Погосян

Из книги Мой малыш родится счастливым автора Анастасия Такки

Фильм «Анализ крови» или «Как самостоятельно научиться понимать Анализ крови» В «Клинике доктора А. В. Ушакова» специально для пациентов создан научно-популярный фильм. Он позволяет пациентам самостоятельно научиться понимать результаты Анализа крови. В фильме

Из книги Нормальная физиология автора Николай Александрович Агаджанян

Глава 7. Газы крови и кислотно-щелочное равновесие Газы крови: кислород (02) и углекислый газ (С02) Перенос кислорода Для выживания человек должен быть способен поглощать кислород из атмосферы и транспортировать его клеткам, где он используется в метаболизме. Некоторые

Из книги автора

Кровь. Какая стихия гуляет по венам? Как по группе крови определить характер человека. Астрологическое соответствие по группе крови. Существует четыре группы крови: I, II, III, IV. По мнению ученых, по крови можно определить не только состояние здоровья человека и

Из книги автора

Объем и физико-химические свойства крови Объем крови – общее количество крови в организме взрослого человека составляет в среднем 6 – 8% от массы тела, что соответствует 5–6 л. Повышение общего объема крови называют гиперволемией, уменьшение – гиповолемией.Относительная

Кровь - жидкость, циркулирующая в кровеносной системе и переносящая газы и другие растворенные вещества, необходимые для метаболизма либо образующиеся в результате обменных процессов. Кровь состоит из плазмы (прозрачной жидкости бледно-желтого цвета) и взвешенных в ней клеточных элементов. Имеется три основных типа клеточных элементов крови: красные кровяные клетки (эритроциты), белые кровяные клетки (лейкоциты) и кровяные пластинки (тромбоциты).

Красный цвет крови определяется наличием в эритроцитах красного пигмента гемоглобина. В артериях, по которым кровь, поступившая в сердце из легких, переносится к тканям организма, гемоглобин насыщен кислородом и окрашен в ярко-красный цвет; в венах, по которым кровь притекает от тканей к сердцу, гемоглобин практически лишен кислорода и темнее по цвету .

Кровь представляет собой концентрированную суспензию форменных элементов, главным образом, эритроцитов, лейкоцитов и тромбоцитов в плазме, а плазма, в свою очередь, является коллоидной суспензией белков, из которых наибольшее значение для рассматриваемой проблемы имеют: сывороточные альбумин и глобулин, а также фибриноген.

Кровь - довольно вязкая жидкость, причем вязкость ее определяется содержанием эритроцитов и растворенных белков. От вязкости крови зависят в значительной мере скорость, с которой кровь протекает через артерии (полуупругие структуры), и кровяное давление. Текучесть крови определяется также ее плотностью и характером движения различных типов клеток. Лейкоциты, например, движутся поодиночке, в непосредственной близости к стенкам кровеносных сосудов; эритроциты могут перемещаться как по отдельности, так и группами наподобие уложенных в стопку монет, создавая аксиальный, т.е. концентрирующийся в центре сосуда, поток .

Объем крови взрослого мужчины составляет примерно 75 мл на килограмм веса тела; у взрослой женщины этот показатель равен примерно 66 мл. Соответственно общий объем крови у взрослого мужчины - в среднем около 5 л; более половины объема составляет плазма, а остальная часть приходится в основном на эритроциты .

Реологические свойства крови оказывают значительное влияние на величину сопротивления току крови, в особенности периферической кровеносной системы, что сказывается на работе сердечно-сосудистой системы, и, в конечном счете, на скорости обменных процессов в тканях спортсменов.

Реологические свойства крови играют важную роль в обеспечении транспортных и гомеостатических функций кровообращения, особенно на уровне микрососудистого русла. Вязкость крови и плазмы вносит существенный вклад в сосудистое сопротивление кровотоку и влияет на минутный объем крови . Повышение текучести крови увеличивает кислородтранспортные возможности крови, что может играть важную роль в повышении физической работоспособности. С другой стороны, гемореологические показатели могут быть маркерами ее уровня и синдрома перетренировки.

Функции крови:

1. Транспортная функция. Циркулируя по сосудам, кровь транспортирует множество соединений - среди них газы, питательные вещества и др.

2. Дыхательная функция. Эта функция заключается в связывании и переносе кислорода и углекислого газа.

3. Трофическая (питательная) функция. Кровь обеспечивает все клетки организма питательными веществами: глюкозой, аминокислотами, жирами, витаминами, минеральными веществами, водой.

4. Экскреторная функция. Кровь уносит из тканей конечные продукты метаболизма: мочевину, мочевую кислоту и другие вещества, удаляемые из организма органами выделение.

5. Терморегуляторная функция. Кровь охлаждает внутренние органы и переносит тепло к органам теплоотдачи.

6. Поддержание постоянства внутренней среды. Кровь поддерживает стабильность ряда констант организма.

7. Обеспечение водно-солевого обмена. Кровь обеспечивает водно-солевой обмен между кровью и тканями. В артериальной части капилляров жидкость и соли поступают в ткани, а в венозной части капилляра возвращаются в кровь.

8. Защитная функция. Кровь выполняет защитную функцию, являясь важнейшим фактором иммунитета, или защиты организма от живых тел и генетически чуждых веществ.

9. Гуморальная регуляция. Благодаря своей транспортной функции кровь обеспечивает химическое взаимодействие между всеми частями организма, т.е. гуморальную регуляцию. Кровь переносит гормоны и другие физиологически активные вещества .

Плазма крови представляет собой жидкую часть крови, коллоидный раствор белков. В ее состав входит вода (90 - 92%) и органические и неорганические вещества (8 - 10 %). Из неорганических веществ в плазме больше всего белков (в среднем 7 - 8%) - альбуминов, глобулинов и фибриногена (плазма, не содержащая фибриноген, называется сывороткой крови). Кроме того, в ней содержатся глюкоза, жир и жироподобные вещества, аминокислоты, мочевина, мочевая и молочная кислота, ферменты, гормоны и т.д. Неорганические вещества составляют 0.9 - 1.0 % плазмы крови. Это в основном соли натрия, калия, кальция, магния и др. Водный раствор солей, который по концентрации соответствует содержанию солей в плазме крови, называется физиологическим раствором. Он используется в медицине для восполнения недостающей в организме жидкости .

Таким образом, кровь обладает всеми функциями ткани организма - структурой, особой функцией, антигенным составом. Но кровь является тканью особой, жидкой, постоянно циркулирующей по организму. Кровь обеспечивает функцию снабжения других тканей кислородом и транспорт продуктов метаболизма, гуморальную регуляцию и иммунитет, свертывающую и противосвертывающую функцию. Вот почему кровь является одной из самых изучаемых тканей организма.

Исследования реологических свойств крови и плазмы спортсменов в процессе общей аэрокриотерапии показали достоверное изменение вязкости цельной крови, показателя гематокрита и гемоглобина. У спортсменов с низким значением показателя гематокрита, гемоглобина и вязкости - повышение, а у спортсменов с высоким показателем гематокрита, гемоглобина и вязкости - понижение, что характеризует избирательный характер воздействия ОАКТ при этом не наблюдалось достоверного изменения вязкости плазмы крови .