Лабораторные показатели кислотно-основного состояния крови. Алгоритмы интерпретации показателей кислотно-основного состояния - интенсивная терапия

Активная реакция крови - чрезвычайно важная гомеостатическая константа организма, обеспечивающая течение окислительно-восстановительных процессов, деятельность ферментов, направление и интенсивность всех видов обмена.
Кислотность или щелочность раствора зависит от содержания в нем свободных ионов водорода [Н+]. Количественно активная реакция крови характеризуется водородным показателем - рН {power hydrogen - «сила водорода»).
Водородный показатель - отрицательный десятичный логарифм концентрации водородных ионов, т. е. pH=-lg.
Символ рН и шкалу рН (от 0 до 14) ввел в 1908 г. Сервисен. Если рН равно 7,0 (нейтральная реакция среды), то содержание ионов Н+ равно 107 моль/л. Кислая реакция раствора имеет рН от 0 до 7; щелочная - от 7 до 14.
Кислота рассматривается как донор ионов водорода, основание - как их акцептор, т. е. вещество, которое может связывать ионы водорода.
Постоянство кислотно-основного состояния (КОС) поддерживается как физико-химическими (буферные системы), так и физиологическими механизмами компенсации (легкие, почки, печень, другие органы).
Буферными системами называют растворы, обладающие свойствами достаточно стойко сохранять постоянство концентрации водородных ионов как при добавлении кислот или щелочей, так и при разведении.
Буферная система - это смесь слабой кислоты с солью этой кислоты, образованной сильным основанием.
Примером может служить сопряженная кислотно-основная пара карбонатной буферной системы: Н2СО3 и NaHC03.
В крови существует несколько буферных систем:
1) бикарбонатная (смесь Н2СОз и НСО3-);
2) система гемоглобин - оксигемоглобин (оксигемоглобин имеет свойства слабой кислоты, а дезоксигемоглобин - слабого основания);
3) белковая (обусловленная способностью белков ионизироваться);
4) фосфатная система (дифосфат - монофосфат).
Самой мощной является бикарбонатная буферная система - она включает 53% всей буферной емкости крови, остальные системы составляют соответственно 35%, 7% и 5%. Особое значение гемоглобинового буфера заключается в том, что кислотность гемоглобина зависит от его оксигенации, то есть газообмен кислорода потенцирует буферный эффект системы.
Исключительно высокую буферную емкость плазмы крови можно проиллюстрировать следующим примером. Если 1 мл децинормальной соляной кислоты добавить кіл нейтрального физиологического раствора, который не является буфером, то его рН упадет с 7,0 до 2,0. Если такое же количество соляной кислоты добавить кіл плазмы, то рН снизится всего с 7,4 до 7,2.
Роль почек в поддержании постоянства кислотно-основного состояния заключается в связывании или выведении ионов водорода и возвращении в кровь ионов натрия и бикарбоната. Механизмы регуляции КОС почками тесно связаны с водно-солевым обменом. Метаболическая почечная компенсация развивается гораздо медленнее дыхательной компенсации - в течение 6-12 ч.
Постоянство кислотно-основного состояния поддерживается также деятельностью печени. Большинство органических кислот в печени окисляется, а промежуточные и конечные продукты либо не имеют кислого характера, либо представляют собой летучие кислоты (углекислота), быстро удаляющиеся легкими. Молочная кислота в печени преобразуется в гликоген (животный крахмал). Большое значение имеет способность печени удалять неорганические кислоты вместе с желчью.
Выделение кислого желудочного сока и щелочных соков (панкреатического и кишечного) также имеет значение в регуляции КОС.
Огромная роль в поддержании постоянства КОС принадлежит дыханию. Через легкие в виде углекислоты выделяется 95% образующихся в организме кислых валентностей. За сутки человек выделяет около 15 ООО ммоль углекислоты, следовательно, из крови исчезает примерно такое же количество ионов водорода (Н2СОз=С02Т + Н20). Для сравнения: почки ежедневно экскретируют 40-60 ммоль Н+ в виде нелетучих кислот.
Количество выделяемой двуокиси углерода определяется ее концентрацией в воздухе альвеол и объемом вентиляции. Недостаточная вентиляция приводит к повышению парциального давления С02 в альвеолярном воздухе (альвеолярная гиперкапния) и соответственно увеличению напряжения углекислого газа в артериальной крови (артериальная гиперкапния). При гипервентиляции происходят обратные изменения - развивается альвеолярная и артериальная гипокапния.
Таким образом, напряжение углекислого газа в крови (РаС02), с одной стороны, характеризует эффективность газообмена и деятельность аппарата внешнего дыхания, с другой - является важнейшим показателем кислотно-основного состояния, его дыхательным компонентом.
Респираторные сдвиги КОС самым непосредственным образом участвуют в регуляции дыхания. Легочный механизм компенсации является чрезвычайно быстрым (коррекция изменений рН осуществляется через 1-3 мин) и очень чувствительным.
При повышении РаС02 с 40 до 60 мм рт. ст. минутный объем дыхания возрастает от 7 до 65 л/мин. Но при слишком большом повышении РаС02 или длительном существовании гиперкапнии наступает угнетение дыхательного центра с понижением его чувствительности к С02.
При ряде патологических состояний регуляторные механизмы КОС (буферные системы крови, дыхательная и выделительная системы) не могут поддерживать рН на постоянном уровне. Развиваются нарушения КОС, и в зависимости от того, в какую сторону происходит сдвиг рН, выделяют ацидоз и алкалоз.
В зависимости от причины, вызвавшей смещение рН, выделяют дыхательные (респираторные) и метаболические (обменные) нарушения КОС: дыхательный ацидоз, дыхательный алкалоз, метаболический ацидоз, метаболический алкалоз.
Системы регуляции КОС стремятся ликвидировать возникшие изменения, при этом респираторные нарушения нивелируются механизмами метаболической компенсации, а метаболические нарушения компенсируются изменениями вентиляции легких.

6.1. Показатели кислотно-основного состояния

Кислотно-основное состояние крови оценивается комплексом показателей.
Величина рН - основной показатель КОС. У здоровых людей рН артериальной крови равен 7,40 (7,35-7,45), тв е. кровь имеет слабощелочную реакцию. Снижение величины рН означает сдвиг в кислую сторону - ацидоз (рН < 7,35), увеличение рН - сдвиг в щелочную сторону - алкалоз (рН > 7,45).
Размах колебаний рН кажется небольшим вследствие применения логарифмической шкалы. Однако разница в единицу рН означает десятикратное изменение концентрации водородных ионов. Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) считаются несовместимыми с жизнью.
Колебания рН в пределах 7,35-7,45 относятся к зоне полной компенсации. Изменения рН вне пределов этой зоны трактуются следующим образом:
субкомпенсированный ацидоз (рН 7,25-7,35);
декомпенсированнй ацидоз (рН < 7,25);
субкомпенсированный алкалоз (рН 7,45-7,55);
декомпенсированный алкалоз (рН > 7,55).
РаС02 (РС02) - напряжение углекислого газа в артериальной крови. В норме РаС02 составляет 40 мм рт. ст. с колебаниями от 35 до 45 мм рт. ст. Повышение или снижение РаС02 является признаком респираторных нарушений.
Альвеолярная гипервентиляция сопровождается снижением РаС02 (артериальной гипокапнией) и респираторным алкалозом, альвеолярная гиповентиляция - повышением РаС02 (артериальной гиперкапнией) и респираторным ацидозом.
Буферные основания (Buffer Base, ВВ) - общее количество всех анионов крови. Поскольку общее количество буферных оснований (в отличие от стандартных и истинных бикарбонатов) не зависит от напряжения С02, по величине ВВ судят о метаболических нарушениях КОС. В норме содержание буферных оснований составляет 48,0 ± 2,0 ммоль/л.
Избыток или дефицит буферных оснований (Base Excess, BE) - отклонение концентрации буферных оснований от нормального уровня. В норме показатель BE равен нулю, допустимые пределы колебаний ±2,3 ммоль/л. При повышении содержания буферных оснований величина BE становится положительной (избыток оснований), при снижении - отрицательной (дефицит оснований). Величина BE является наиболее информативным показателем метаболических нарушений КОС благодаря знаку (+ или -) перед числовым выражением. Дефицит оснований, выходящий за пределы колебаний нормы, свидетельствует о наличии метаболического ацидоза, избыток - о наличии метаболического алкалоза.
Стандартные бикарбонаты (SB) - концентрация бикарбонатов в крови при стандартных условиях (рН=7,40; РаС02=40 мм рт. ст.; t=37 °С; S02=100%).
Истинные (актуальные) бикарбонаты (АВ) - концентрация бикарбонатов в крови при соответствующих конкретных условиях, имеющихся в кровеносном русле. Стандартные и истинные бикарбонаты характеризуют бикарбонатную буферную систему крови. В норме значения SB и АВ совпадают и составляют 24,0 ± 2,0 ммоль/л. Количество стандартных и истинных бикарбонатов уменьшается при метаболическом ацидозе и увеличивается при метаболическом алкалозе.

6.2. Нарушения кислотно-основного состояния

Метаболический (обменный) ацидоз развивается при накоплении в крови нелетучих кислот. Он наблюдается при гипоксии тканей, нарушениях микроциркуляции, кетоацидозе при сахарном диабете, почечной и печеночной недостаточности, шоке й других патологических состояниях. Наблюдается уменьшение величины рН, снижение содержания буферных оснований, стандартных и истинных бикарбонатов. Величина BE имеет знак (-), что свидетельствует о дефиците буферных оснований.
К метаболическому (обменному) алкалозу могут приводить тяжелые нарушения обмена электролитов, потеря кислого желудочного содержимого (например, при неукротимой рвоте), чрезмерное потребление с пищей щелочных веществ. Увеличивается значение рН (сдвиг в сторону алкалоза) - повышается концентрация ВВ, SB, АВ. Величина BE имеет знак (+) - избыток буферных оснований.
Причиной дыхательных нарушений кислотно-основного состояния является неадекватная вентиляция.
Респираторный (дыхательный) алкалоз возникает в результате произвольной и непроизвольной гипер-вентиляции. У здоровых людей он может наблюдаться в условиях высокогорья, при беге на длинные дистанции, при эмоциональном возбуждении. Одышка легочного или сердечного больного, когда нет условий для задержки СО2 в альвеолах, искусственная вентиляция легких могут сопровождаться респираторным алкалозом. Он протекает с повышением рН, снижением РаСОг, компенсаторным уменьшением концентрации бикарбонатов, буферных оснований, нарастанием дефицита буферных оснований.
При выраженной гипокапнии (РаСОг < 20-25 мм рт. ст.) и респираторном алкалозе могут наступить потеря сознания и судороги. Особенно неблагоприятны гипокапния и респираторный алкалоз в условиях недостатка кислорода (гипоксии). Устойчивость организма к гипоксии при этом резко падает. С этими нарушениями обычно связывают летные происшествия.
Респираторный (дыхательный) ацидоз развивается на фоне гиповентиляции, которая может быть следствием угнетения дыхательного центра. При тяжелой дыхательной недостаточности, связанной с патологией легких, возникает респираторный ацидоз. Величина рН при этом смещена в сторону ацидоза, напряжение СО2 в крови повышено.
При значительном (более 70 мм рт. ст.) и достаточно быстром повышении РаС02 (например, при астматическом статусе) может развиться гиперкапническая кома. Сначала появляются головная боль, крупный тремор рук, потливость, затем психическое возбуждение (эйфория) или сонливость, спутанность сознания, артериальная и венозная гипертензия. Далее появляются судороги, потеря сознания.
Гиперкапния и респираторный ацидоз могут быть следствием пребывания человека в атмосфере с повышенным содержанием углекислого газа.
При хронически развивающемся дыхательном ацидозе наряду с повышением РаС02 и снижением рН наблюдается компенсаторное увеличение бикарбонатов и буферных оснований. Величина BE, как правило, имеет знак (+) - избыток буферных оснований.
При хронических заболеваниях легких может возникнуть и метаболический ацидоз. Его развитие связывают с активным воспалительным процессом в легких, гипоксемией, недостаточностью кровообращения. Метаболический и респираторный ацидоз нередко сочетаются, в результате чего возникает смешанный ацидоз.
Первичные сдвиги КОС не всегда можно отличить от компенсаторных вторичных. Обычно первичные нарушения показателей КОС выражены больше, чем компенсаторные, и именно первые определяют направление сдвига рН. Правильная оценка первичных и компенсаторных сдвигов КОС - обязательное условие адекватной коррекции этих нарушений. Чтобы избежать ошибок в трактовке КОС, необходимо наряду с оценкой всех его компонентов учитывать Ра02 и клиническую картину заболевания.
Определение рН крови осуществляется электрометрическим способом с использованием стеклянного электрода, чувствительного к ионам водорода.
Для определения напряжения углекислого газа в крови используется эквилибрационная методика Аструпа или электрод Северингхауса. Значения, характеризующие метаболические компоненты КОС, рассчитывают с помощью номограммы.
Исследуется артериальная кровь или артериализированная капиллярная кровь из кончика прогретого пальца. Требуемый объем крови не превышает 0,1-0,2 мл.
В настоящее время выпускаются приборы, определяющие рН, напряжение С02 и 02 крови; расчеты производятся микрокомпьютером, входящим в состав прибора.

Кислотно-основное состояние (кислотно-щелочная реакция) - это исключительно важная постоянная характеристика крови, которая обеспечивает нормальное течение окислительно-восстановительных процессов в организме, ферментативную активность, а также направление и интенсивность всех видов обмена веществ.
Кислотность или щелочность любой жидкости (в том числе и крови) напрямую зависит от содержания в ней свободных ионов водорода. Количественная активная кислотная или щелочная реакция определяется «водородным показателем» - рН.
Понятие «водородный показатель» (дословно «сила водорода») и шкалу рН (от 0 до 14) ввел в 1908 г. физик и датский биохимик Серен Петер Лауриц Сервисен.
Нейтральная реакция соответствует рН = 7,0, меньшие значения являются свидетельством сдвига в «кислую» сторону, а большие - в «щелочную».
Постоянство кислотно-основного состояния организма поддерживается буферными системами (жидкостями, поддерживающими баланс ионов водорода) и физиологическими механизмами компенсации (за счет деятельности печени, почек, легких и других органов).
В крови человека одновременно функционируют несколько буферных систем (кислота-основание):
1) бикарбонатная (Н2СОэ и НСО-3);
2) гемоглобиновая (гемоглобин - слабая кислота, оксигемоглобин - слабое основание);
3) белковая (работающая за счет способности белков ионизироваться);
4) фосфатная (дифосфат и монофосфат).
Наиболее активной является бикарбонатная буферная система крови, обеспечивающая до 35 % буферной емкости крови; на остальные системы приходится, соответственно, 35, 7 и 5 %. Особенность гемоглобиновой буферной системы крови состоит в том, что кислотность гемоглобина зависит от его насыщенности кислородом, который человек получает извне.
Основная роль в поддержании стабильного кислотно-основного равновесия в организме отводится почкам, печени и легким. Наибольшее значение имеют легкие, так как через них (в виде углекислоты) выделяется до 95% кислых продуктов, образующихся в результате жизнедеятельности организма. В почках связываются и выводятся ионы водорода, а также возвращаются в кровь ионы натрия и бикарбонат. Печень преобразует и выводит различные кислоты. Деятельность органов пищеварительного тракта в поддержании кислотно-основного постоянства также немаловажна, поскольку они выделяют пищеварительные соки, имеющие кислую или щелочную реакцию.
Определение водородного показателя (рН) крови проводят электрометрическим способом с применением специального стеклянного электрода, чувствительного к ионам водорода.
Кислотно-основное состояние крови связано с содержанием в ней углекислого газа. Для установления уровня напряжения углекислого газа и кислорода в крови применяют эквилибрационную методику Аструпа или электрод Северингхауса. Значения, характеризующие изменения кислотно-основного состояния, рассчитывают посредством составления номограммы.
Сейчас массово выпускают приборы, определяющие рН, напряжение С02 и 02 в крови; расчеты производятся с помощью микрокомпьютера, входящего в состав прибора. В настоящее время для определения кислотно-щелочного состояния наиболее широко применяется так называемая методика Аструпа.
Для определения кислотно-основного состояния крови берется артериальная или капиллярная (из кончика пальца) кровь. Следует отметить, что наиболее высокое постоянство кислотно-щелочных показателей отмечается все же в артериальной крови.
У здорового человека рН артериальной крови составляет 7,35-7,45, т.е. кровь имеет слабощелочную реакцию. Снижение величины рН свидетельствует о сдвиге реакции крови в кислую сторону, что называется «ацидоз» (рН Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) расцениваются как несовместимые с жизнью. Изменения рН, отличные от нормы, обозначаются как:
1) субкомпенсированный ацидоз (рН 7,25-7,35);
2) декомпенсированый ацидоз (рН 3) субкомпенсированный алкалоз (рН 7,45-7,55);
4) декомпенсированный алкалоз (рН > 7,55).
Немаловажно учитывать при оценке кислотно-основного состояния организма РаС02, т.е. напряжение углекислого газа в артериальной крови. В норме данный показатель составляет в среднем 40 мм рт. ст. (от 35 до 45), а более значительные отклонения от нормы являются признаком дыхательных нарушений.
Метаболический алкалоз или ацидоз определяется в том числе по избытку или недостаточности буферных оснований (Buffer Base, ВВ) в крови. У здорового человека В В = 0, а допустимые пределы колебаний составляют ±2,3 ммоль/л.
Такой показатель как «стандартные бикарбонаты» (SB) отражает концентрацию бикарбонатов в крови при стандартных условиях (рН = 7,40; РаС02 = 40 мм рт. ст.; t = 37 °С; S02 = 100%). «Истинные, или актуальные бикарбонаты» (АВ) отражают состояние бикарбонатного буфера в условиях конкретного организма, в норме совпадают со «стандартными» и составляют 24,0 ± 2,0 ммоль/л.
Показатели SB и АВ снижаются при нарушение обмена веществ со сдвигом реакции крови в кислую сторону и уменьшаются при сдвиге реакции крови в щелочную сторону.
Если лабораторные данные свидетельствуют о наличии метаболического ацидоза, это может быть признаком кетоацидоза, сахарного диабета, кислородного голодания (гипоксии) тканей, шокового состояния, а также ряда других патологических состояний.
Причиной метаболического алкалоза может стать неукротимая рвота (с большой потерей кислоты с желудочным соком) или чрезмерное употребление в пищу продуктов, вызывающих ощелачивание организма (растительных, молочных).
Дыхательный алкалоз может возникнуть у физически здорового человека в условиях высокогорья или при чрезмерной физической или психической нагрузке. Также он отмечается при одышке у пациентов с заболеваниями сердца и (или) легких, если углекислый газ не скапливается в легочных альвеолах.
Дыхательный ацидоз развивается при недостаточном поступлении воздуха в легкие, что может говорить об угнетении деятельности дыхательного центра в головном мозге, выраженной дыхательной недостаточности при тяжелой патологии легких.

Снижение или повышение одного показателя - рН крови - свидетельствует об ацидозе или алкалозе, но не дает исчерпывающего ответа на вопрос, какой компонент КЩС нарушен: респираторный или метаболический.

Если же интерпретируются два показателя (рН и рС0 2), то определение первичности нарушения КЩС становится возможным (таб. 1).


Таблица 1. Определение первичности нарушения КЩС

рН артериальной крови

(норма 7,35 - 7,45)

рС0 2 (норма 35 -45 мм рт.ст.) Первичное нарушение
Снижен Повышено Дыхательный ацидоз
Снижен Норма или снижено Метаболический ацидоз
Повышен Повышено или норма Метаболический алкалоз
Повышено Снижено Дыхательный алкалоз
Норма Понижено

Смешанная форма

дыхательного алкалоза и

метаболического ацидоза

Норма Повышено

Смешанная форма

дыхательного ацидоза и

метаболического алкалоза

Кислотно-основной гомеостаз крови характеризуют следующие показатели:


рН — показатель активной реакции крови; суммарно отражает функциональное состояние дыхательных и метаболических компонентов и изменяется в случае превышения возможностей всех буферных систем (в норме 7,35 — 7,45).


рСО 2 (мм рт. ст.) — напряжение углекислоты в крови; единственный дыхательный показатель КОГ, отражающий функциональное состояние системы дыхания, изменяющееся при ее патологии и в результате компенсаторных реакций при метаболических сдвигах (в норме 35-45 мм рт.ст. в артериальной крови).


АВ (ммоль/л) — истинные бикарбонаты крови (aktual bikarbonate); концентрация ионов угольной кислоты, НС0 3 - при физическом состоянии крови в кровеносном русле, т. е. определенное без соприкосновения с воздухом при температуре 38°С (в норме 21,8-27,2 ммоль/л).


SВ (ммоль/л) — стандартный бикарбонат (standart bikar-bonate); концентрация бикарбонатных ионов (НС0 3 - , измеренная при стандартных условиях: рС0 2 — 5,3 кПа (40 мм рт. ст.), при температуре 38°С и полном насыщении гемоглобина кислородом. Характеризует смещение ионов бикарбонатной системы.

Этот показатель считается более ценным в диагностическом отношении, чем истинный бикарбонат, поскольку отражает только метаболические сдвиги (в норме 21,6—26,9 ммоль/л).


ВВ (ммоль/л) — буферные основания крови (buffer base); общая концентрация буферных ионов бикарбонаты, белки, гемоглобин в полностью оксигенированной крови. Диагностическое значение этого показателя небольшое, т.к. он меняется в зависимости от рС0 2 , концентрация гемоглобина (в норме 43,7-53,5 ммоль/л).


BE (ммоль/л) — избыток или недостаток буферных оснований (base excess). Характеризует сдвиг ионов всех буферных систем и указывает на природу нарушений кислотно-основного гомеостаза. Отрицательное значение BE отражает дефицит оснований или избыток кислот. При метаболических сдвигах КОГ крови смещение BE будет выражено более значительно, чем при дыхательных нарушениях (в норме BE = -3 — + 3 ммоль/л).


АР- анионная разница. В основе клинического применения показателя АР лежит предположение, что любой раствор, включая плазму, должен быть электронейтральным, т.е. сумма катионов равна сумме анионов. Плазма содержит один главный измеряемый катион Na+ и два главных измеряемых аниона СI - и НСО з - . Вклад других неизмеряемых анионов (НА) и катионов (НК) невелик (таб. 2). Из этого следует, что сумма измеряемых и неизмеряемых анионов равна сумме измеряемых и неизмеряемых катионов:


НА + (СI - + НСО з -) = НК + Na +

Таблица 2.


Пользуясь данными таблицы можно рассчитать АР:

АР = НА - НК = 23 - 11 = 12 мэкв/л

АР = НА - НК = Na+- (СI - + НСОз -)


В случаях увеличения Н + неравенство между измеряемыми в плазме концентрациями катионов и анионов выйдет за пределы нормального диапазона 9 - 13 мэкв/л.

Показатель АР может быть полезен для выявления этиологии метаболического ацидоза.

Как правило, чем больше АР, тем легче определить причину ацидоза.

Высокая АР характерна для лактат-ацидоза, вызванного анаэробным гликолизом. Диабетический кетоацидоз и уремия также сопровождается увеличением АР. Если при высокой АР уровень лактата, кетона и креатинина нормальный, наиболее вероятно, что причиной ацидоза является прием токсичных веществ (метанол, паральдегид, этанол, этиленгликоль, лекарственные средства). Высокий уровень салицилатов в плазме сопровождается значительным увеличением АР.

Классификация нарушений КЩС

1. Простые нарушения:

Ацидоз:
- метаболический
- респираторный
Алкалоз:
- метаболический
- респираторный


2.Смешанные нарушения:

2.1 Однонаправленные: метаболический и дыхательный ацидоз и алкалоз
2.2 Разнонаправленные:

Метаболический ацидоз и дыхательный алкалоз
- метаболический алкалоз и дыхательный ацидоз


По степени компенсации:


1. Компенсированный.

Значения рН остаются в пределах нормы (рН=7,35 - 7,45), содержание бикарбонатов и СО 2 изменяется в зависимости от направленности метаболических и респираторных сдвигов.


2. Субкомпенсированный.

Кроме изменений в содержании бикарбонатов и СО 2 изменяется и рН, но в незначительных пределах + 0,04 (рН=7,31 - 7,49)


3. Некомпенсированный.

РН < 7,30 - некомпенсированный ацидоз;

РН > 7,50 - некомпенсированный алкалоз.


Метаболический ацидоз

Метаболический ацидоз возникает вследствие существенного снижения уровня бикарбоната в организме.


Причины:


1. Увеличение продукции нелетучих кислот.

Усиленная продукция кислых метаболитов (так называемых кетокислот — (3-гидроксибутирата и ацетоацетата) является одной из характерных особенностей неконтролируемого или плохо контролируемого инсулинзависимого диабета. При этом состоянии, называемом диабетическим кетоацидозом, количество бикарбоната в крови значительно снижается из-за его использования для нейтрализации избытка кислот.


В клетках, которые в значительной мере лишены кислорода и, поэтому, не могут метаболизировать (окислять) глюкозу происходит накопление лактата. Такое существенное накопление лактата в крови в количествах, достаточных для развития метаболического ацидоза, происходит, если ткани неадекватно перфузируются кровью, а следовательно и недостаточно оксигенируются.

Наиболее яркой причиной лактоацидоза при нарушении перфузии тканей является гиповолемический шок. Кроме того, лактоацидоз может возникать при почечной или печеночной недостаточности, диабете, сепсисе и лейкемии.


2. Увеличение потерь оснований.

Бикарбонат секретируется в полость тонкого кишечника для осуществления пищеварения и абсорбируется в нижних отделах желудочно-кишечного тракта. Если реабсорбции не происходит, он теряется с фекалиями.

Любые заболевания пищеварительного тракта (например, тяжелая диарея) могут привести к потерям бикарбоната из организма в количествах, достаточных для развития метаболического ацидоза.

Также потеря бикарбонатов может быть связана с почечной недостаточностью (проксимальный канальцевый ацидоз - почечный ацидоз II типа). Ухудшение реабсорбции Nа+ приводит появлению щелочной реакции мочи. Кроме этого, проксимальный канальцевый ацидоз характеризуется снижением уратов, фосфатов и калия в сыворотке крови, глюкозурией и аминоацидурией.

С помощью величины АР можно отличить потери НСОз - при диарее от потерь НСОз - , вызванных почечным канальцевым ацидозом таб. 3.


Таблица 3. Анионная разница по (П.Марино, 1998)


3. Увеличение поступлений в организм кислот извне.

Злоупотребление кислой пищей, прием внутрь соляной кислоты, введение в больших количествах старой консервированной крови


4. Уменьшение выведения ионов Н + через почки.

В нормальных условиях почки выводят Н + в виде титруемой кислоты (фосфаты, сульфаты) и аммиака. Этот механизм может быть нарушен при заболеваниях почек, недостаточности надпочечников, дистальном почечном канальцевом ацидозе и гиперальдостеронизме. При почечной недостаточности, уменьшении числа функционирующих нефронов адекватная фильтрация и выведение Н + отсутствуют.

При почечном ацидозе I типа (дистальный канальцевый ацидоз) секреция Н + в дистальных канальцах нарушается. Поскольку экскреция Н + в дистальных канальцах зависит от обмена Nа + , уменьшение объема жидкости способствует нарастанию ацидоза. Посредством такого же механизма, связанного с уменьшением поставки Nа+ в канальцы почек, адреналиновая недостаточность и селективный гипоальдостеронизм также приводят к ухудшению экскреции Н + . При этом метаболический ацидоз сочетается с другими формами нарушений электролитного обмена: гиперкалиемией, гипонатриемией, гиперкальциемией.


Компенсаторные реакции

Снижение уровня НСО 3 - в плазме крови (метаболический ацидоз), возникающее первично, компенсируется увеличением легочной вентиляции и снижением рС0 2 , при этом соотношение рС0 2 /НСО 3 - остается неизменным.


Увеличение содержания кислот буферируется бикарбонатным буфером:


НС1 + H 2 C0 3 /NаHC0 3 ↔ Nа Сl+ H 2 C0 3

С0 2 + Н 2 О


Диагностические критерии:

1. При сниженном рН нормальный или пониженный уровень рСО 2 указывает на первичный метаболический ацидоз;

2. При нормальной величине рН пониженный уровень рСО 2 указывает на смешанную форму дыхательного алкалоза и метаболического ацидоза;

3. При нормальной величине рН нормальный уровень рСО 2 может свидетельствовать о том, что показатели КЩС находятся в пределах нормы, но не исключается возможность смешанных метаболических алкалозов/ацидозов.

В этих случаях определяют АР и по этому показателю судят об изменениях КЩС.

4. Дефицит оснований - АВ, ВЕ, ВВ, SВ.

Клинические формы ацидоза

Лактат - ацидоз

Этиопатогенез.

1. Снижение оксигенации тканей - тканевая гипоксия. Наибольшее значение придают циркуляторным нарушениям (кардиогенный, септический, гиповолемический шок). Наличие всех форм гипоксии теоретически способствует развитию лактат-ацидоза. Остановка сердца сопровождается анаэробным обменом веществ и лактат-ацидозом;

2. Нарушения функции печени снижают ее способность к превращению молочной кислоты в глюкозу и гликоген.

3. Недостаток тиамина (витамин В1) у больных, злоупотребляющих алкоголем ведет к угнетению окисления пирувата в митохондриях и способствует накоплению молочной кислоты.

4. Повышение правовращающего изомера молочной кислоты (D-лактат-ацидоз), неопределяемого стандартными лабораторными методиками. Это изомер образуется в результате действия микроорганизмов, расщепляющих глюкозу в кишечнике. Чаще всего встречается у больных после обширных операций на кишечнике, при дисбактериозе, нарушениях функции ЖКТ. По-видимому, это наиболее распространенное нарушение КЩС, но оно часто не диагностируется (П.Марино, 1998);

5. Не исключается возможность лактат-ацидоза при длительных инфузиях адреналина и других сосудосуживающих средств.

6. Лактат-ацидоз может развиться в случаях использования натрия нитропруссида, при метаболизме которого образуются цианиды, способные нарушать процессы окислительного фосфорилирования.


Диагностика лактат-ацидоза:

Наличие метаболического ацидоза, связанного с повышенной АР;

Выраженный дефицит оснований;

АР>30 мэкв/л, в то время как другие причины, вызывающие ацидоз (кетоацидоз, почечная недостаточность, введение токсических веществ), отсутствуют;

Уровень молочной кислоты в венозной крови превышает 2 мэкв/л. Этот показатель отражает интенсивность образования лактата в тканях.


Лечение:

Устранение причины лактат-ацидоза.

Введение натрия бикарбоната показано при рН<7,2, содержании НСОз - <15 ммоль/л. Расчет примерной дозы натрия бикарбоната можно провести по следующей формуле:

Дефицит НСОз - (ммоль) = 0,3 * масса тела (кг) * ВЕ = мл 8,5%р-р соды

Для 3% соды: ВЕ*0,8*масса тела

Для 4% соды: ВЕ*0,6*масса тела

Для 5% соды: ВЕ*0,5*масса тела


Вначале устраняют половину выявленного дефицита НСОз путем внутривенного введения раствора в течение 30 минут. Затем под контролем содержания НСОз в сыворотке крови продолжают коррекцию в течение 4 - 6 часов.

В данном случае рН ниже нормы - обозначается как некомпенсированный ацидоз. Далее оцениваем газовый состав крови: уровень рО 2 для артериальной крови несколько повышен, но рСО 2 снижен. Учитывая дефицит оснований и повышенный лактат можно сделать вывод, что это метаболический лактат-ацидоз, при котором включена немедленная компенсация в виде гипервентиляции.

Кетоацидоз.


Этиопатогенез

В условиях выраженного дефицита инсулина блокируется поступление глюкозы в мышцы и жировую ткань, снижается уровень глюкозы в клетках, ткани испытывают «энергетический голод». Это ведет к гиперсекреции контринсулярных гормонов - соматотропина, глюкагона, кортизола, адреналина. Под влиянием этих гормонов стимулируется гликогенолиз, глюконеогенез и липолиз. В результате липолиза жиры расщепляются до свободных жирных кислот, которые становятся источником энергии и кетоновых тел. В условиях дефицита инсулина происходит чрезмерное образование кетоновых тел, развивается кетоацидоз.


Диагностика


Клинические симптомы:

Слабость, жажда, тошнота;

Диабетическая прекома;

Диабетическая кома.


Лабораторные данные:

Гипергликемия

Глюкозурия

Метаболический ацидоз (снижение рН, НСОз, рСО 2 , выраженный дефицит оснований)

Ацетон в плазме

Ацетонурия

Гиперосмолярность плазмы > 300 мосм/л


Лечение

Первоначальная доза инсулина 10 ЕД в/в. Последующую инфузию инсулина в изотоническом растворе натрия хлорида или 5% раствре глюкозы проводят со скоростью 0,1 ЕД/кг/час.

Дефицит внеклеточной и внутриклеточной жидкости при кетоацидозе может достигать 10% массы тела. Лечение следует начинать с введения изотонических растворов, содержащих Na + и CI - . Опасность чрезмерного введения кристаллоидов заключается не только в перегрузке объёмом, но и в дисбалансе концентраций натрия и глюкозы. Поэтому необходим динамический контроль этих веществ и при необходимости своевременная коррекция.


Потери К + при кетоацидозе достигают 200 - 700 ммоль и продолжаются по мере устранения ацидоза. Проводя коррекцию гипокалиемии необходимо учитывать не только дефицит, но и потребность. Представлена формула расчета дефицита К + :

Дефицит калия (ммоль) = масса больного (кг) х 0,2 х (4,5 - К + плазмы)


Рекомендуется введение натрия бикарбоната при снижении рН < 7,2 и снижении АД сист ниже 90 мм рт.ст., для предупреждения дальнейших электролитных нарушений и гемолиза. Но введение раствора соды должно быть более осторожным, чем при лактат-ацидозе, рекомендуется вводить 1/2 расчетной дозы.


Алкогольный кетоацидоз


Причины:

Превращение этанола в процессе метаболизма в печени в ацетальдегид с образованием НАД-Н, способствующего выработке кетоновых тел;

Сопутствующее голодание, сопровождающееся усилением кетогенеза и кетонемией;

Обезвоживание, ведущее к олигурии и снижению экскреции кетоновых тел с мочой.


Диагностика.

Алкогольный кетоацидоз обычно развивается через 1 - 3 дня после чрезмерного потребления спиртных напитков. Как правило, уровень глюкозы и кетоновых тел повышается не очень высоко.


Лечение.

Показано в/в введение изотонического раствора натрия хлорида и 5% глюкозы.

Глюкоза угнетает образование кетоновых тел в печени, а солевые растворы повышают выведение их с мочой. Коррекцию калия проводят по содержанию его в сыворотке крови. натрия бикарбонат применим только если рН < 7,2 и снижении АД сист ниже 90 мм рт.ст..


Интерпретация анализа начинается с рН. В данном случае рН ниже нормы и обозначается как некомпенсированный ацидоз. Далее оцениваем газовый состав крови: уровень рО 2 для венозной крови нормальный, однако сделать заключение о наличие гипоксемии нельзя, для этого необходимо определить рО 2 в артериальной крови. Но с учетом нормального уровня лактата, можно сделать вывод, что дефицита О 2 нет, идет аэробный гликолиз. Генез ацидоза метаболический и данное заключение можно сделать по уровню дефицита оснований.

Снижение уровня бикарбоната может быть связано с метаболическим ацидозом или развившейся почечной недостаточностью, это можно сказать с учетом анамнестических и клинических данных.


Метаболический алкалоз


Причины:

Потеря нелетучих кислот

Тяжелая и длительная рвота желудочным соком (он кислый) приводит к потере НСI из организма. Это причины метаболического алкалоза, ассоциированного со стенозом привратника — состояния, при котором затрудняется продвижение желудочного содержимого в тонкий кишечник.

Потеря ионов Н +

Гипокалиемия увеличивает проксимальную канальцевую реабсорбцию НСОз и повышает дистальную канальцевую секрецию Н + . Повышение уровня албдостерона увеличивает секрецию Н + .

Избыточное введение бикарбоната натрия.

В данном случае алкалоз развивается при неконтролируемом введении бикарбоната, цитрата, лактата или ацетата.


Компенсаторные механизмы:

Увеличение содержания НСО3 - в плазме крови (метаболический алкалоз), возникающее первично, компенсируется снижением легочной вентиляции и увеличением рС0 2. Как правило, выраженный дыхательный ацидоз не развивается. Тем не менее, при выраженном метаболическом алкалозе существует опасность гиповентиляции и гиперкапнии.

NаОН + H 2 C0 3 /NаHC0 3 ↔ 2NаHC0 3 + Н 2 О


Диагностика.

НСОз в артериальной крови более 25 ммоль/л, в венозной крови - более 30 ммоль/л;

РН выше нормального уровня;

РСО2 нормальное или повышенное, в наиболее тяжелых случаях может быть сниженным;

При гипохлоремическом алкалозе - СI менее 100 ммоль/л;

Часто бывает гипокалиемия.


Лечение.


1.Устранение основной причины алкалоза;


2.Восполнение дефицита: Дефицит СI (моль/л) = 0,27* масса тела (кг) * (100 - фактическое содержание СI)

Необходимый объём изотонического раствора натрия хлорида может быть определен по формуле: NаСI (л) = дефицит СI / 154, где 154 - содержание СI (моль/л) в 1 л 0,9% раствора натрия хлорида;


3.При потерях НСI необходимо в/в раствора НСI. Обязательное условие для его назначения - нормальное содержание жидкости в организме и нормальная концентрация К+ в сыворотке крови. Дефицит водорода определяют по следующей формуле:

Дефицит Н+ = 0,5 * масса тела (кг) *
(фактическое содержание HC0 3 - желаемое содержание HC0 3)

В 1 л 0,1 нормального раствора HC0 3 содержится 100 ммоль Н+. скорость введения раствора НСI - 0,2 ммоль/кг/час.

Максимальная суточная доза раствора НСI = 100 ммоль.

Анализ нарушений кислотно-щелочного состояния

р Н а р т е р и а л ь н о й к р о в и

АЦИДОЗ (меньше 7.4) АЛКАЛОЗ (больше 7.4)

дыхательный недыхательный дыхательный недыхательный

рСО 2 >40 pCO 3 < 24 (BE <0) pCO 2 <40 HCO 3 > 24 (BE >0)

почечная легочная почечная легочная

компенсация компенсация компенсация компенсация

HCO 3 > 24 (BE >0) pCO 2 <40 pCO 3 < 24 (BE <0) рСО 2 >40

Нарушения кислотно-щелочного состояния (КЩС ) являются в большинстве случаев следствием серьезного патологического нарушения и редко имеют самостоятельное значение. Исследование газового состава артериальной крови (ГАК) - незаменимый метод диагностики.

♦ Обычно pH измеряют прямым методом при помощи специального стеклянного электрода, который имеет мембрану, проницаемую для H+.

♦ Концентрация ионов бикарбоната - HCO 3 - измеряется бикарбонатным электродом или может быть получена расчетным путем.

♦ CO 2 обычно измеряется прямым методом при помощи СО 2 -электрода.

Бикарбонатная система участвует в регуляции pH всех компартментов внутренней среды, обладая возможностью вмешиваться в кислотно-щелочное состояние на двух уровнях: концентрация HCO 3 - регулируется почками, a CO 2 – легкими: H + + HCO 3 - → H 2 CO 3 → H 2 O + CO 2

Точное значение pH среды может быть рассчитано при помощи уравнения Гендерсона-Хассельбаха :

pH = pK + log

[основание] / [кислота] = pK + log /

pK представляет собой специфичную для данного буфера константу (например, для бикарбонатной системы при 37°С pK составляет 6,1).

Поскольку концентрация HCO 3 - регулируется почками, а выведение CO 2 - легкими, уравнение принимает следующий вид: pH = константа ПОЧКИ / ЛЕГКИЕ

Терминологические замечания: ацидоз / ацидемия и алкалоз / алкалемия. Суффикс "емия" ("aemia") означает "определяемый в крови".

Нормальные значения газового состава крови
Показатель Границы нормы Единицы Примечания
pH 7,35 - 7,4 - 7,45 (относительная величина)
PaCO 2 4,8 - 5,3 - 5,9 36 - 40 - 44 кПа мм рт. ст.
PaO 2 11,9 - 13,2 90 - 100 кПа мм рт. ст. На уровне моря FiO 2 = 21%, становится ниже с повышением высоты, повышается при кислородотерапии
HCO 3 - (актуальный бикарбонат - AB) 22 - 24 - 26 ммоль/л Нормальные значения могут варьировать при изменении PCO 2
Стандартный бикарбонат (SB) 22 - 24 - 26 ммоль/л после его стандартизации (эквилибровка) по значению CO 2 40 мм рт. ст. (5,3 кПа)
Избыток оснований (BE) -2,0 - +2,0 ммоль/л При отрицательном значении BE говорят о дефиците оснований

Бикарбонатная буферная система играет наиболее важную роль в поддержание постоянства кислотно-щелочного состояния и может быть оценена при анализе газового состава крови. Легкие способны регулировать выведение CO 2 , а почки экскрецию или задержку HCO 3 - . Это взаимодействие позволяет с высокой точностью поддерживать и регулировать соотношение кислот и оснований в организме.

Каково значение показателей кислотно-щелочного состояния (КЩС) и газового состава артериальной крови (ГАК)?
pH Общие кислотно-щелочные свойства среды. Указывает, имеется ли у пациента ацидемия или алкалемия.
PCO 2 Респираторный компонент
PO 2 Характеризует оксигенацию и не имеет отношения к кислотно-щелочному состоянию (КЩС). В общих чертах является маркером тяжести заболеваний легких, но не поддается интерпретации при неизвестном значении FiO 2 . PO 2 может быть выше 650 мм рт. ст. (85 кПа) при нормальной функции легких на фоне FiO 2 = 100%. Прогнозируемый уровень PaO 2 при нормальной функции легких может быть рассчитан при помощи уравнения альвеолярного газа. В грубом приближении значение прогнозируемого PaO 2 может быть рассчитано как FiO 2 (%) х 6 мм рт. ст. (например, при вентиляции пациента с FiO 2 = 40% PaO 2 должно составить 6 х 40 = 240 мм рт. ст.). Если реальное значение ниже расчетного, имеет место внутрилегочное шунтирование крови (кровь не проходит через вентилируемые альвеолы и поступает в аорту неоксигенированной.). Чем тяжелее поражение легких, тем ниже будет значение PaO 2 при данном уровне FiO 2 .
HCO 3 - (актуальный бикарбонат) Ренальный компонент компенсации.
Стандартный бикарбонат Дополнительный показатель, характеризующий ренальный (метаболический) компонент в нарушениях кислотно-щелочного состояния (КЩС). Имеет большую ценность, чем актуальный бикарбонат, поскольку корректирован по отношению к измененному значению PCO 2 .
Избыток оснований Соответствует количеству сильной кислоты (или основания в случае дефицита оснований), необходимому для титрования 1 литра крови и возвращении значения pH к значению 7,4 при PCO 2 = 5,3 кПа и температуре 37°С. Дополнительный показатель, характеризующий ренальный (метаболический) компонент нарушения. Информационная ценность близка к таковой стандартного бикарбоната (нормальное значение около 0 ммоль/л, для стандартного бикарбоната - 24 ммоль/л).

Дыхательная система способна осуществлять быструю компенсацию нарушений кислотно-щелочного состояния (КЩС ) (в течение нескольких минут). Метаболическая компенсация (почки, система бикарбоната) запускается в течение часов или нескольких дней. Взаимодействие этих компенсаторных систем позволяет точно регулировать кислотно-щелочного состояние (КЩС ). Их цель состоит в поддержании внеклеточного значения pH на уровне 7,4, который является оптимальным для протекания большинства метаболических процессов, например, химических реакций, катализируемых ферментами, и переноса веществ через клеточные мембраны.

Патологические процессы, такие, как тканевая гипоксия, почечная недостаточность, гиповентиляция ведут к нарушению кислотно-щелочного баланса. При нарушении со стороны одной из регуляторных систем другая будет пытаться компенсировать изменения кислотно-щелочного состояния (КЩС ) и привести pH к оптимальному значению. Нарушения кислотно-щелочного состояния (КЩС) и некоторые их причины представлены в таблице "Нарушения кислотно-щелочного состояния ".

Нарушения кислотно-основного состояния
Респираторный ацидоз PaCO 2 повышено Развивается при неадекватной вентиляции, когда продукция CO 2 превышает его элиминацию. Возможные причины: обструкция дыхательных путей, депрессия дыхания (вследствие действия препаратов, ЧМТ, заболеваний дыхательной системы и т.д.)
Респираторный алкалоз PaCO 2 снижено Возникает при гипервентиляции. Гипервентиляция может быть следствием ответа на гипоксемию и включения гипоксического респираторного драйва. Способность легких к выведению CO 2 значительно выше, чем к абсорбции O 2 , в связи с чем при заболеваниях легких часто наблюдается гипоксемия на фоне нормального или пониженного уровня CO 2 . Причиной респираторного алкалоза может быть ИВЛ с высоким минутным объемом вентиляции.
Метаболический ацидоз HCO 3 - снижен (дефицит оснований) Множество этиологических факторов: ♦ Потери бикарбоната через ЖКТ или хроническое поражение почек (нормальный анионный интервал) ♦ Поступление дополнительных количеств неорганических кислот, например, при диабетическом кетоацидозе, лактат-ацидозе, связанном с тканевой гипоксией, передозировка салицилатов, отравление этиленгликолем и прочими ядами, снижение экскреции кислот при почечной недостаточности (повышение анионного интервала).
Метаболический алкалоз HCO 3 - повышен (избыток оснований) Возникает при потерях желудочного содержимого (например, пилоро-стеноз) и терапии диуретиками. Метаболический алкалоз часто сопровождается снижением хлоридов (Cl -) сыворотки.
Смешанный ацидоз PaCO 2 повышено, HCO 3 - снижено Крайне опасное нарушение. Может развиваться при таких тяжелых расстройствах, как септический шок, полиорганная недостаточность, остановка кровообращения.


Компенсаторные механизмы пытаются вернуть pH к нормальному значению, несмотря на сохранение отклонений и PCO 2 до коррекции первичного нарушения. Компенсация нарушений кислотно-щелочного состояния (КЩС ) не должна носить характер избыточной. Например, при метаболическом ацидозе наблюдается падение значения pH < 7,4. При адекватной респираторной компенсации pH будет стремиться к нормальному значению, но не превысит 7,4.

Вот несколько подсказок, которые помогут Вам дифференцировать первичное нарушение и компенсаторный эффект.

Первичное нарушение (метаболического или респираторного характера) по типу параллельно отклонению pH: при снижении pH имеет место ацидотическое нарушение, при повышении pH развивается алкалоз. Компенсаторный эффект (респираторный или метаболический) имеет противоположное направление. Механизмы компенсации будут отклонять pH в сторону нормального значения, при этом полная компенсация достигается редко (восстановление нормального исходного значения), а избыточная компенсация - никогда.

К примеру, если Вы обнаружили сочетание метаболического ацидоза и респираторного алкалоза, значение pH подскажет, какое из нарушений носит первичный, а какое - компенсаторный характер. Если значение pH снижено, первичным дефектом является метаболический ацидоз с респираторной компенсацией. При повышении pH в роли первичного нарушения выступает респираторный алкалоз с метаболической компенсацией.

Пошаговая интерпретация газового состава крови
Шаг 1 Общая картина без отклонений, имеется ацидемия или алкалемия? pH < 7,35 = ацидемия [... перейдите к шагу 2] pH > 7,45 = алкалемия [... перейдите к шагу 5]
Шаг 2 Если наблюдается ацидемия: Характер первичного нарушения: метаболический, респираторный или смешанный? CO2 повышен = респираторный ацидоз [... шаг 3] Бикарбонат снижен, значение BE отклонено в отрицательном направлении = метаболический ацидоз [... шаг 4]
Шаг 3 Если имеет место респираторный ацидоз: Имеется метаболическая компенсация? CO 2 повышено (респираторный ацидоз), но метаболический компонент изменяется в противоположном направлении (BE или стандартный бикарбонат (SB) повышены, как при метаболическом алкалозе), что говорит о метаболической компенсации первичных нарушений кислотно-щелочного состояния (КЩС ).
Шаг 4 Если имеет место метаболический ацидоз: Имеется ли респираторная компенсация? Значение BE принимает отрицательное значение (метаболический ацидоз); респираторный компонент изменяется в противоположном направлении (CO 2 снижен - респираторный алкалоз), что говорит о респираторной компенсации.
Шаг 5 Если наблюдается алкалемия: Характер первичного нарушения: метаболический или респираторный? Первичное нарушение имеет то же направление, что и изменения pH (в сторону алкалоза). Респираторный алкалоз сопровождается снижением CO 2 . При метаболическом алкалозе CO 2 повышается и значение BE становится положительным.
Шаг 6 При наличии респираторного или метаболического алкалоза: Есть ли элементы компенсации? Изменения равнозначны вышеуказанным.
Шаг 7 Обратите внимание на оксигенацию Соответствует ли значение PaO 2 установленному FiO 2 ? Уровень оксиге-нации ниже прогнозированного может указывать на заболевание легких, шунтирование крови или ошибочный забор образца венозной крови (в последнем случае PaO 2 обычно < 40 мм рт. ст., сатурация < 75%). Способность легких к элиминации CO 2 превышает их резерв в отношении оксигенации. В связи с этим заболевания легких часто сопровождаются гипоксемией на фоне нормального или сниженного значения PCO 2 . Значительное повышение CO 2 сопровождается параллельным снижением O 2 .
Шаг 8 Суммируйте Ваши наблюдения Например: наблюдается метаболический ацидоз (поскольку pH снижен, BE имеет отрицательное значение) с респираторной компенсацией (поскольку параллельно снижено значение PCO 2).
Шаг 9 Попытайтесь установить причину нарушений

Определение водородного показателя (рН) крови проводят электрометрическим способом с применением специального стеклянного электрода, чувствительного к ионам водорода.

Кислотно-основное состояние крови связано с содержанием в ней углекислого газа. Для установления уровня напряжения углекислого газа и кислорода в крови применяют эквилибрационную методику Аструпа или электрод Северингхауса. Значения, характеризующие изменения кислотно-основного состояния, рассчитывают посредством составления номограммы.

Сейчас массово выпускают приборы, определяющие рН, напряжение С0 2 и 0 2 в крови; расчеты производятся с помощью микрокомпьютера, входящего в состав прибора. В настоящее время для определения кислотно-щелочного состояния наиболее широко применяется так называемая методика Аструпа.

Для определения кислотно-основного состояния крови берется артериальная или капиллярная (из кончика пальца) кровь. Следует отметить, что наиболее высокое постоянство кислотно-щелочных показателей отмечается все же в артериальной крови.

У здорового человека рН артериальной крови составляет 7,35-7,45, т.е. кровь имеет слабощелочную реакцию.

Снижение величины рН свидетельствует о сдвиге реакции крови в кислую сторону, что называется «ацидоз» (рН < 7,35), а увеличение данного показателя свыше 7,45 - о сдвиге реакции крови в щелочную сторону (алкалозе).

Сдвиги рН более чем на 0,4 (рН менее 7,0 и более 7,8) расцениваются как несовместимые с жизнью.

Изменения рН, отличные от нормы, обозначаются как:
1) субкомпенсированный ацидоз (рН 7,25-7,35);
2) декомпенсированый ацидоз (рН < 7,25);
3) субкомпенсированный алкалоз (рН 7,45-7,55);
4) декомпенсированный алкалоз (рН > 7,55).

Немаловажно учитывать при оценке кислотно-основного состояния организма РаС02, т.е. напряжение углекислого газа в артериальной крови. В норме данный показатель составляет в среднем 40 мм рт. ст. (от 35 до 45), а более значительные отклонения от нормы являются признаком дыхательных нарушений.

Метаболический алкалоз или ацидоз определяется в том числе по избытку или недостаточности буферных оснований (Buffer Base, ВВ) в крови. У здорового человека В В = 0, а допустимые пределы колебаний составляют ±2,3 ммоль/л.

Такой показатель как «стандартные бикарбонаты» (SB) отражает концентрацию бикарбонатов в крови при стандартных условиях (рН = 7,40; РаС02 = 40 мм рт. ст.; t = 37 °С; S02 = 100%). «Истинные, или актуальные бикарбонаты» (АВ) отражают состояние бикарбонатного буфера в условиях конкретного организма, в норме совпадают со «стандартными» и составляют 24,0 ± 2,0 ммоль/л.

Показатели SB и АВ снижаются при нарушение обмена веществ со сдвигом реакции крови в кислую сторону и уменьшаются при сдвиге реакции крови в щелочную сторону.

Если лабораторные данные свидетельствуют о наличии метаболического ацидоза, это может быть признаком кетоацидоза, сахарного диабета, кислородного голодания (гипоксии) тканей, шокового состояния, а также ряда других патологических состояний.

Причиной метаболического алкалоза может стать неукротимая рвота (с большой потерей кислоты с желудочным соком) или чрезмерное употребление в пищу продуктов, вызывающих ощелачивание организма (растительных, молочных).

8. Определение осмотической резистентности эритроцитов Работа 3.5 – стр. 82

Определение осмотической резистентности эритроцитов (осмотической стойкости): используют набор гипотонических растворов NaCl (концентрация соли ниже 0.9%), помещают в них эритроциты исследуемой крови и отмечают концентрацию раствора, в котором (а) начинается гемолиз отдельных эритроцитов (в норме 0.48% NaCl и (б) происходит полный гемолиз всех эритроцитов (в норме 0.33% NaCl). Например, осмотическая стойкость эритроцитов уменьшается при сфероцитозе и увеличивается при талассемии.

9. Исследование буферных свойств сыворотки крови (опыт Фриденталя). Учебник

Показатель рН – 7.35 – 7.4 (отрицательный логарифм концентрации водородных ионов) – влияет на ход всех биохимических реакций в организме. Сдвиг рН в кислую сторону называется ацидозом, сдвиг в щелочную сторону – алкалозом . Регуляция рН: (1) В крови имеются буферные системы, которые могут связывать водородные и гидроксильные ионы и, таким образом, уменьшать колебания рН (доли секунды); (2) дыхательная система – удаление СО 2 легкими (несколько минут); (3) выделительная функция почек – выведение кислых и щелочных продуктов обмена; самый медленный механизм (часы, дни), но самый мощный. Буферные системы крови : (1) бикарбонатный буфер (угольная кислота и бикарбонат натрия) – буферная система крови; (2) фосфатный буфер (гидрофосфат и дигидрофосфат натрия) – буферная система крови, почечных канальцев, а также внутриклеточная буферная система многих тканей; (3) гемоглобиновый буфер (восстановленный гемоглобин ННв и калиевая соль оксигенированного гемоглобина КНвО 2) – буферная система эритроцитов, самая мощная (75% общей буферной емкости); (4) белковый буфер (амфолитные свойства белков) – буферная система крови, а также внутриклеточная буферная система.