Физика восприятия. Особенности человеческого зрения Изменение зрения с возрастом

В процессе зрения происходит восприятие параметров потока света. В светочувствительном рецепторе сходятся процессы из разных сфер действительности – взаимодействуют квантовые объекты (фотоны), рецепторы, как измерительные приборы, оценивающие параметры квантовых объектов, и нейроны, относящиеся к элементам, осуществляющим процессы высшей нервной деятельности.

Эта проблема интересна еще и тем, что эта сфера знания недостаточно изучена, причем от нее отказываются как физики, так и биологи. Кроме того, проблема восприятия света входит в состав проблем восприятия информации человеком, рассмотренных в статье «Восприятие информации» как часть решения психофизической проблемы -

Непосредственно сопряжение электромагнитного излучения и вещества осуществляется в зрительных рецепторах сетчатки глаза живого организма, здесь свет преобразуется в нервные сигналы в виде пачек электрических импульсов, из которых уже в мозгу создается образ видимых предметов. Светочувствительные рецепторы выступают в качестве границы, разделяющей (и соединяющей) квантовые и нервные процессы, на которой сопрягаются разные сферы реальности - излучение, вещество и нервная деятельность.

Исследования показывают, что энергия воздействующего на рецептор фотона воспринимается конкретным электроном фоточувствительного белка. Этот электрон не просто находится в составе конкретного белка, но и белок, в свою очередь, вмонтирован в тело определенного светочувствительного рецептора, а рецептор имеет вполне определенное местоположение на сетчатке глаза и связан с конкретными нейронами. На сетчатке глаза имеется специальное место, которое принимается за центр общей системы отсчета всех рецепторов.

Рецепторы имеют строение в виде столбика из пластин (порядка 2000 шт.), на каждой пластине располагаются порядка 60 тыс. светочувствительных белков. Рецепторы располагаются на сетчатке сплошным массивом, закрывают все поле сетчатки. Различают цветоразличающие рецепторы – колбочки, и черно-белые рецепторы – палочки. Количество цветных колбочек оценивается в 6 – 10 млн., колбочки располагаются преимущественно вокруг центра зрения. Палочек насчитывается порядка 100 млн. Они располагаются по всему полю сетчатки.

Зрительная система воспринимает свет в диапазоне 400 - 780 нм, ультрафиолетовое излучение (волны меньшие 360) поглощает хрусталик, большие не воспринимаются рецепторами, к тому же инфракрасные волны (1000 нм и больше) излучаются самим телом и являлись бы засветкой зрительной системы.

Для зрительной информации естественно важен спектр излучения, однако светочувствительный рецептор не просто принимает излучение, но и определяет различия между локальными характеристиками потока света. Существуют специальные горизонтальные клетки в рецепторе и между рецепторами, определяющие градиент потока света по интенсивности, длине волны и насыщенности доминантного цвета - соответственно информация передается не только о цвете, но и о яркости и насыщенности цвета на фоне белого. Необходимо также отметить, что рецептор не только воспринимает характеристики потока света и передает их в мозг, но и управляет общей и раздельно локальной прозрачностью вещества до рецептора, чтобы можно было видеть различия в потоке света даже при различной его интенсивности и контрастности.

Вследствие поглощения фотонов в рецепторе происходят электрохимические процессы, вызывающие срабатывание последующих нейронов. В целях рецепции, фотон может быть воспринят только в том случае, если воспринявший его светочувствительный белок встроен в измерительную цепь рецептора. Если белок, воспринявший фотон находится вне измерительной схемы рецептора, то поглощение фотона произойдет, но не вызовет необходимых для рецепции химических воздействий и такое поглощение окажется бесполезным, поскольку информация о таком фотоне не дойдет до следующих нейронов. Из этого можно сделать вывод, что поглощение фотонов в рамках процедур, происходящих в сенсорных системах, носит не случайный характер.

В соответствии с трехкомпонентной теорией строения цветочувствидельных рецепторов (колбочек) считается, что светочувствительная колбочка реагирует только на фотоны определенной длины волны. Однако данная теория вызывает сомнения в достоверности. Электрон в белке (или сам белок) должен сначала как-то определиться с тем - реагировать ему, если у фотона соответствующая длина волны, и не реагировать, если длина волны чуть больше (или меньше). Он же не знает длину волны, которая попадет в этот белок, не знает, на сколько длина волны отличается от той, которую он может принять. Причем неважно, на сколько отличается от "своей". В любом случае электрон (или кто-то из участников поглощения) каким-то образом должен "почувствовать", поглощать или пропустить фотон. Офтальмологи на эти вопросы не смогли ответить мне. А физики вообще отказались рассматривать проблему восприятия света глазом, под предлогом, что в этой ситуации им невозможно осуществить какие-либо измерения, а без достоверных измерений они не вправе что-либо утверждать и делать какие-либо умозаключения.

Ситуация еще больше запуталась от мысли, что цветное зрение способно воспринимать цвет (длину волны фотона) и одновременно определять его местоположение на сетчатке. Как вообще возможно определение длины волны фотона, если локализация электрона, который реагирует на фотон, составляет единицы Ангстрем (0,1 нм), а длина волны фотона примерно в пять тысяч раз больше (от 400 до 770 нм)? Ведь поглощаемая энергия фотона должна быть размазана случайным образом по несоизмеримо большему пространству, чем локализация электрона.

Возникают и другие вопросы. Какова природа энергии фотона (кинетическая, электрическая, магнитная, еще какая-то)? Что происходит с энергией фотона при поглощении его электроном? Какие происходят преобразования энергии?

Желание получить ответы на возникающие вопросы заставляет углубляться в подробности процесса поглощения света веществом. Физика утверждает, что для возбуждения электрона необходимо затратить не какую-то там энергию, а вполне конкретную величину - разницу между двумя энергетическими состояниями, что вполне определенно подтверждается в физических экспериментах. Поглощение происходит в виде определенной полосы поглощения в электронном спектре молекулы. Однако это всего лишь констатация факта поглощения конкретной порции энергии, эмпирическое его подтверждение, но еще не объяснение механизма поглощения.

Чтобы обострить проблему и показать ее физическую, а не физиологическую природу отметим, что именно из факта поглощения конкретным электроном конкретного фотона следует, что в процессе зрительной рецепции возможно одновременное и достаточно точное измерение энергии (импульса) фотона и местоположения этого фотона. Местоположение квантового объекта соответствует местоположению (месту локализации) электрона, поглотившего фотон, и это местоположение вполне определяемо на макроуровне, так как от него идет "ниточка" к приемнику сигнала, а энергия фотона соответствует разнице между энергиями состояний электрона - тоже вполне определима. Если энергия фотона соответствует разнице энергий, необходимых для изменения местоположения электрона, то поглощение происходит. Если не соответствует, то фотон проходит сквозь данную молекулу. Теперь посмотрим, что из этого получается.

Для фотона имеется уравнение

λ·P=ħ, где λ – длина волны, P – импульс фотона, а ħ – постоянная Планка. Это уравнение фотона очень похоже на соотношение неопределенности Гейзенберга:

ΔХ · ΔР >= ħ, где ΔХ - ошибка в определении местоположения квантового объекта, ΔР - ошибка в определении его импульса.

Есть возможность оценить ошибку измерения параметров фотона при его поглощении конкретным электроном конкретного светочувствительного белка сетчатки. Величину возникающей ошибки в измерении импульса можно установить по разрешительной способности зрительной системы в определении цвета. Экспериментально установлено, что чувствительность оценивается в 2 – 3 нм. Это составляет менее 1 % от длины волны света в видимом диапазоне - (0,3 – 0,5) %. По уравнению фотона λ·P=ħ определяем разницу в изменении импульса, фиксируемого зрительной системой: ΔР = ħ/λ – ħ/1,01·λ, что примерно = 0,01· ħ/λ

ΔР = 0,01· ħ/λ

Ошибку в измерении местоположения фотона (ΔХ) можно оценить, как размер области локализации самого электрона в молекуле белка. Если размер атома оценить примерно в 0,1 нм, то ошибку локализации электрона (с большим завышением) можно принять 0,5 нм. Эту величину целесообразно выразить в условных единицах, как долю от длины волны фотона (500 нм). В итоге получаем, что ошибка измерения местоположения фотона примерно (0,5/500) λ = 0,001· λ.

ΔХ = 0,001· λ

Подставляя относительные ошибки определения местоположения и импульса фотона в соотношение неопределенности, получаем:

ΔХ · ΔР = 0,001· λ · 0,01· ħ/λ = 0,00001· ħ.

В соответствии с произведенными оценками произведение ошибок измерения координат и импульса рецептором глаза оказывается в сто тысяч раз меньше, чем постоянная Планка. Причем следует учесть, что обе ошибки взяты с некоторым завышением, если взять реальные ошибки в определении ΔХ и ΔР, то их произведение будет примерно в миллион раз меньше постоянной Планка. А по соотношению неопределенностей Гейзенберга произведение этих ошибок не может быть меньше ħ. Что это: ошибка в приведенных рассуждениях или действительно с соотношением неопределенностей какая-то неувязка?

Попробуем разобраться.

Количественные значения ошибок измерения в приведенных рассуждениях можно считать соответствующими реальным, или завышенными, поэтому величина в 0,00001 - это еще заниженная степень нарушения соотношения неопределенности Гейзенберга. С другой стороны размер неувязки столь велик, что ошибки можно еще многократно завысить без ущерба для общего вывода о справедливости соотношения неопределенностей. Из чего можно сделать вывод, что если и есть ошибка в приведенных рассуждениях, то она не в количественных значениях, а в чем-то другом.

Может быть, одна из процедур (либо соотношение неопределенностей, либо рецепция света в зрительной системе) не относится к процедуре измерения? Ведь соотношение неопределенностей характеризует именно возможные ошибки измерения параметров квантового объекта.

Поскольку каждый фотон является квантовым объектом, то из этого следует, что каждый фотон поглощается индивидуально, хоть в зрительной системе, хоть в другом месте. Оценка характеристик фотона в рамках зрительной рецепции осуществляется самим актом его поглощения хромофором, а не различением характеристик фотонов нервными клетками. Если он поглотился, то уже самим фактом поглощения его энергия перешла конкретному электрону. А это значит, что в результате акта поглощения становятся известными и местоположение фотона (по исходному местоположению электрона), и энергия фотона (по величине изменения энергии электрона). И то, и другое о фотоне становится не просто "известным" конкретному электрону и белку, в котором он находится, но и известными измерительной схеме в целом. Физические и химические изменения в характеристиках электрона и белка, порождаемые поглощением, становятся известными определенному нейрону, который можно уже считать макро «наблюдателем». С другой стороны, место на сетчатке, в которое попал фотон, детерминируется пространственным местоположением предмета, который излучил этот фотон, и настройкой оптической части зрительной системы – линзой хрусталика и фокусировкой получаемого изображения.

Если же поглощения фотона не произошло, то, увы, не произошло и измерения параметров квантового объекта. Поглощение такого фотона произойдет пигментом задней стенки сетчатки, то есть вне измерительной схемы. В этом и заключается специфика электрона (хромофора, белка, рецептора в целом): они размещены в составе измерительной системы местоположения предмета, позволяющей не просто поглощать, а поглощать в рамках измерительной процедуры.

Из этого следует, что анализируемая процедура поглощения фотона в зрительной системе рассматривается именно в рамках процедуры измерения параметров фотона, а не просто его поглощения. Из этого следует, что предназначение рассматриваемой процедуры соответствует заявленному назначению и «области действия» соотношения неопределенностей.

Может быть, в процедуре измерения параметров фотонов в зрительной системе имеется какая-то уникальная специфика, порождающая столь существенное отклонение от соотношения неопределенностей?

Действительно, такие отличия имеются.

Во-первых, соотношение неопределенностей рассматривается применительно к процедуре измерения параметров квантового объекта, осуществляемой с сохранением самого квантового объекта. Например, Луи де Бройль в книге «Революция в физике» отмечает, что сама процедура измерения не должна вносить изменения в сами измеряемые параметры - вносимые измерительным прибором изменения в измеряемые параметры должны быть как можно меньше.

Суть идеи соотношения неопределенностей заключается в том, что для более точного измерения нужны фотоны с меньшей собственной локализацией, но такие фотоны являются и более энергичными. Специфика квантового объекта такова, что измерение местоположения квантового объекта с большей точностью требует применения, как указывает де Бройль, воздействия на измеряемый объект более коротких фотонов, но чем меньше длина волны фотонов, измеряющих местоположение квантового объекта, тем больше их энергия, тем большее изменение энергии происходит в измеряемом объекте. Сама процедура измерения вносит изменения в измеряемые параметры, поэтому и считается, что этого эффекта принципиально невозможно избежать. Ошибки одновременного измерения пространственных и энергетических характеристик квантового объекта подчинены рассматриваемому соотношению неопределенностей.

Итак, отличия измерений в рамках процедуры рецепции и рамках объяснения соотношения неопределенностей – имеются.

Во-первых, в отличие от измерительных процедур, описанных у де Бройля, в измерительной процедуре, осуществляемой в рамках зрительной рецепции, сам объект, параметры которого измеряются, не сохраняется , а погибает полностью в процессе измерительной процедуры. А если не погибает, то и не попадает в измерительную процедуру. В зрительной системе оцениваемый квантовый объект просто поглощается, проглатывается светочувствительным белком, в результате чего обе измеряемые величины (координата и импульс) становятся известными этому белку. Он «измеряет» указанные параметры с точностями, на несколько порядков не вписывающиеся в соотношение неопределенности. Правда, ценой уничтожения измеряемого объекта. Этот белок и есть тот измерительный прибор, который якобы невозможно построить в принципе.

Во-вторых, в процессе зрительной рецепции измерения местоположения фотона вообще-то не осуществляется. Местоположением фотона считается местоположение электрона, поглощающего фотон. Местоположение электрона является не измеряемым параметром, а априорно известным измерительной системе. Фотон «сам» натыкается на тот или иной светочувствительный белок, имеющий этот самый электрон. Но данное обстоятельство не меняет существа принципа неопределенности. В соответствии с этим принципом «невозможно построить измерительный прибор, который позволил бы нарушить ограничения, накладываемые неравенствами Гейзенберга». Невозможно построить в принципе .

В сущности, зрительная система просто обходит установленный запрет. В зрительной системе установлено огромное множество измерительных приборов. Куда бы ни попал фотон, он наткнется на «измерительный прибор», каковым является молекула светочувствительного белка. А от нее обязательно тянется ниточка к макро измерительному прибору – рецептору и далее к нейрону. Преобразование микро сигнала от квантового объекта в макро сигнал это уже другая проблема, которую целесообразно рассматривать отдельно. В данном аспекте следует сделать акцент на понимании светочувствительного белка в качестве измерительного прибора для оценки пространственных и энергетических параметров фотона, специфического измерительного прибора, который позволяет нарушить ограничения, накладываемые неравенствами Гейзенберга.

В-третьих, нужно разобраться с пониманием величин, входящих в соотношение неопределенностей. Вообще, имеет смысл задаться вопросом - в соотношении неопределенности, дельта икс, это что? Может быть, это вообще не ошибка измерения? Общность математической структуры уравнения фотона с соотношением неопределенности подсказывает, что дельта икс это вовсе не ошибка в измерении координаты местоположения частицы, а длина волны, так что это вовсе не ошибка измерения, размер частицы. Длина волны фотона жестко связана с импульсом фотона соответствующим уравнением. Поэтому само соотношение и включенные в него переменные в таком понимании приобретают иной смысл.

Это не мы не можем одновременно измерить пространственную и энергетическую характеристики фотона, а фотон не может иметь иных величин импульса и длины волны, кроме как соответствующих уравнению фотона (и совпадающему с ним по структуре соотношению неопределенности). У уравнения фотона и соотношения неопределенностей общая математическая структура. Соотношение неопределенностей применительно к фотону приобретает форму зависимости между длиной волны и импульсом. Правда при таком понимании неопределенность превращается в определенность . А ПНГ перестает иметь исключительное отношение к измерению параметров квантового объекта и начинает описывать соотношение не между ошибками измерения, а между собственными параметрами квантового объекта. Для фотона, как самого простого из квантовых объектов, связь между длиной волны и импульсом - естественным образом совпадает с соотношением "неопределенностей". При этом измерительный аспект (измерение координаты и импульса фотона) вовсе не исключается, а приобретает вполне здравый смысл: как же можно измерить местоположение квантового объекта точнее, чем его размер? Объект есть везде в пределах своего размера.

При этом размер квантового объекта, в данном случае фотона, жестко связан с энергетической характеристикой фотона. Чем энергичнее происходят электромагнитные колебания (чем больше частота) тем меньше длина волны и размер фотона, тем меньше общая локализация фотона.

В результате подобного изменения интерпретации математическая составляющая соотношения полностью сохраняется. И это объясняет, почему соотношение так прекрасно подтверждается в экспериментах, на которые все ссылаются. Участвующие в соотношении величины имеют отношение не к процедуре измерения, а к собственным характеристикам самой частицы, в данном случае - фотона. И соотношение между собственными пространственными и энергетическими характеристиками имеет жесткую связь, описываемую этим соотношением.

В-четвертых, при обосновании необходимости введения принципа неопределенности специально указывается, что его введение есть следствие вероятностной интерпретации частиц. В частности де Бройль указывает: «Еще раз подчеркнем, что соотношение неопределенности – неизбежное следствие, с одной стороны, возможности сопоставить частице некоторую волну, с другой – общих принципов вероятностной интерпретации». Возникает закономерный вопрос: а является ли фотон, параметры которого оцениваются рецепторами зрительной системы, частицей с вероятностной природой?

Привлечение в рассматриваемое соотношение параметра «размер» частицы, оказывается, в рамках квантовой механики с вероятностной интерпретации частиц - вообще не имеет смысла. В существующей квантовой механике просто нет такого понятия и параметра, как "размер" частицы, и нет именно по причине вероятностной интерпретации самой частицы. У нее не может быть размера, поскольку при вероятностной интерпретации у частицы нет, и не может быть границ, они просто размыты. Но это только при вероятностной интерпретации. Для реального фотона "размером" частицы является длина волны. Один период электромагнитных колебаний, собственно, и есть фотон, квант света.

Таким пониманием, кстати, легко объясняется корпускулярно волновой дуализм. Внутри частицы - волна, а один период колебания - частица. Волновые свойства частицы это ее внутренние свойства, а при рассмотрении той же частицы снаружи – это корпускула, квант, частица, нечто дискретное.

Естественно, такое понимание не соответствует пониманию, принятому в квантовой механике. Когда создавалась квантовая механика, для квантовых объектов было принято матричное описание частиц. Под частицей, как правило, рассматривался электрон, и для него вывели все квантовые закономерности. Затем уже эти закономерности начали переносить и на электромагнитное излучение. В качестве фотона также стали понимать волновой пакет. Даже если волна монохроматическая, в реальных условиях она распадается на множество гармоник. Совокупность всех колебаний, связанных с основной монохроматической волной стали называть волновым пакетом, а пакет - фотоном. Для волнового пакета естественным образом подошло принятое для частиц вероятностное описание.

Однако, «что» в реальности поглощается зрительной системой человека, «какой» фотон поглощается рецептором - волновой пакет из совокупности гармоник, или один период монохроматического электромагнитного колебания?

Что является «зеленым», «красным» и т.д.?

Параметры «какого» объекта оценивает рецептор?

По моим представлениям – конечно же фотон как период электромагнитного колебания. Всякие там разбегания волнового пакета возможно и существуют, но они лишь мешает измерению и поэтому игнорируется или сглаживается измерительной системой, а оценивается основной параметр главной гармоники. Причем достаточно оценить лишь один параметр: либо импульс, либо длину волны, чтобы знать и то и другое. В силу наличия жесткой связи между длиной волны и импульсом – это же два взаимодополняющих параметра частицы по соотношению определенностей.

Светочувствительный аппарат глаза. Луч света, прой­дя через оптические среды глаза, пронизывает сетчатку и попадает на ее наружный слой (рис. 51). Здесь находятся рецепторы зри­тельного анализатора. Это особые, чувствительные к свету клет­ки-палочки и колбочки (см. цв. табл.). Чувствительность пало­чек необычайно велика. Они дают возможность видеть в сумерки и даже ночью, но без различения цвета, так как возбуждаются лу­чами почти всего видимого спектра. Чувствительность колбочек по крайней мере в 1000 раз меньше. Они приходят в состояние воз­буждения лишь при достаточно сильном освещении, но зато позво­ляют различать цвета.

Вследствие низкой чувствительности колбочек различение цве­тов к вечеру становится все более затруднительным и в конце кон­цов исчезает.

В сетчатке человеческого глаза на площади примерно 6- 7 кв. см насчитывают около 7 млн. колбочек и около 130 млн. па­лочек. Распределены они в сетчатке неравномерно. В центре сет­чатки, как раз против зрачка, находится так называемое желтое пятно с углублением посредине - центральной ямкой. Когда че­ловек рассматривает деталь какого-нибудь предмета, ее изображе­ние попадает на центр желтого пятна. В центральной ямке имеют­ся только колбочки (рис. 52). Здесь их диаметр по крайней мере вдвое меньше, чем в других участках сетчатки, и на 1 кв. мм их ко­личество достигает 120-140 тыс., что способствует более ясному и отчетливому видению. По мере удаления от центральной ямки на-. чинают встречаться и палочки, сначала небольшими группами, а потом все в большем количестве, а колбочек становится меньше. Так, уже на расстоянии 4 мм от центральной ямки на 1 кв. мм при­ходится около 6 тыс. колбочек и 120 тыс. палочек.

Рис. 51< Схема строения сетчатки.

I-.прилегающий к сетчатке край сосу­дистой оболочки;

II - слой пигмент­ных клеток; III- слой палочек и кол­бочек; IV и V - два последовательных ря­да нервных клеток, на которые перехо­дит возбуждение с палочек и колбочек;

1 - палочки; 2 - кол­бочки; 3 - ядра па­лочек и колбочек;

4 - нервные волокна.

Рис. 52. Строение сетчатки в области желтого пятна (схема):

/ - центральная ямка; 2 - колбочки; 3 - палочки; 4 - слои нервных клеток; 5 - нервные волокна, направляющиеся к сле­пому пятну,

В полутьме, когда колбочки не функционируют, человек лучше различает те предметы, изображение которых попадает не на жел­тое пятно. Он не заметит белого предмета, если направит на него взор, так как изображение попадет на центр желтого пятна, где нет палочек. Однако предмет станет видимым, если перевести взор в сторону на 10-15°. Теперь изображение попадает на участок сет­чатки, богатый палочками. Отсюда при большой фантазии может возникнуть впечатление «призрачности» предмета, его необъясни­мого появления и исчезновения. На этом основаны суеверные пред­ставления о призраках, блуждающих по ночам.



При дневном свете человек хорошо различает цветовые оттенки предмета, на который он смотрит. Если же изображение попадает на периферические участки сетчатки, где мало колбочек, то разли­чение цветов становится неотчетливым и грубым.

В палочках и колбочках, как и на фотопленке, под влиянием света происходят химические реакции, действующие как раздра­житель. Возникающие импульсы приходят от каждого пункта сет­чатки в определенные участки зрительной области коры больших полушарий.

Цветовое зрение. Все многообразие цветовых оттенков может быть получено путем смешения трех цветов спектра - красного, зеленого и фиолетового (или синего). Если быстро вращать диск, составленный из этих цветов, он будет казаться белым. Доказано, что цветоощущающий аппарат состоит из трех видов колбочек:

одни преимущественно чувствительны к красным лучам, другие - к зеленым, третьи - к" синим. От соотношения силы возбужде­ния каждого вида колбочек и зависит цветовое зрение.

Наблюдения за электрическими реакциями коры больших полу­шарий позволили установить, что мозг новорожденного реагирует


не только на свет, но и на цвет. Способность различать цвета была обнаружена у грудного ребенка методом условных рефлексов. Раз­личение цветов становится все более совершенным по мере образо­вания новых условных связей, приобретаемых в процессе игры. ^ Дальтонизм. В конце XVIII в. известный английский естество-. испытатель Джон Дальтон подробно описал расстройство цветово­го зрения, которым он сам страдал. Он не отличал красного цвета. от зеленого, а темно-красный казался ему серым или черным. Та­кое нарушение, получившее название дальтонизма, встречается примерно у 8% мужчин и очень редко у женщин. Оно передается по наследству через поколение по женской линии, иными словами, от деда к внуку через мать. Бывают и другие расстройства цветового зрения, но они встречаются очень редко. Страдающие дальтониз­мом могут долгие годы не замечать своего дефекта. Иногда человек узнает о нем при проверке зрения для поступления на работу, ко­торая требует отчетливого различения красного и зеленого цветов (например, машинистом на железнодорожном транспорте).

Ребенок, страдающий дальтонизмом, может запомнить, что этот шарик красный, а другой, побольше, зеленый. Но если дать ему два одинаковых шарика, отличающихся только по цвету (красный и зеленый), то он не сумеет их различить. Такой ребенок путает цве­та при сборе ягод, на занятиях по рисованию, при подборе цветных кубиков по цветным картинкам. Видя это, окружающие, в том чис­ле и воспитатели, обвиняют ребенка в невнимании, или обдуманной. шалости, делают ему замечания, наказывают, снижают оценку за выполненную работу. Такая незаслуженная кара может только от­разиться на нервной системе ребенка, повлиять на его дальнейшее развитие и поведение. Поэтому, в тех случаях, когда ребенок пута­ет илц долго не может усвоить те или иные цвета, его следует по-" казать врачу-специалисту, чтобы выяснить, не результат ли эта врожденного дефекта зрения.

Острота зрения. Остротой зрения называется способность глаза различать мельчайшие детали. Если лучи, исходящие от двух ря­дом расположенных точек, возбуждают одну и ту- же или две со­седние колбочки, то обе точки воспринимаются как одна более крупная. Дл» их раздельного видения необходимо, чтобы между;

возбужденными колбочками находилась еще одна. Следовательно, максимально возможная острота зрения: зависит от толщины кол­бочек в центральной ямке желтого пятна. Высчитано, что угол, под которым падают на сетчатку лучи от двух точек, максимально сближенных, но видимых раздельно, равен "/во 0 , т. е. одной угловой минуте. Этот угол и принято считать за норму остроты зрения. Ост­рота зрения несколько меняется в зависимости от силы освещения.-Однако и при одной и той же освещенности она может значитель­но меняться. Она увеличивается под влиянием тренировки, если, например, человеку приходится иметь дело. с тонким.различением мелких предметов. При утомлении острота зрения понижается.

Восприятие цвета – сложный процесс, обусловленный физическими и психологическими стимулами. С одной стороны ощущение цвета вызывается волнами определенной длины, существующими объективно и независимо от нас, с другой стороны – восприятие цвета невозможно без посредничества глаз. Это создает впечатление, что цвет существует лишь в восприятии.

Современная психология выделяет в цветовом зрении два качественных уровня: ощущение цвета и восприятие цвета, а творческая тематика курса требует третьего уровня: чувства цвета. Если ощущение понимается как простейший психологический акт, непосредственно обусловленный физиологией зрения, а восприятие – как более сложный процесс, определенный рядом закономерностей психологического характера, то чувство цвета в наибольшей степени относится к эмоциональной и эстетической сфере.

Ощущение цвета как простейший зрительный акт свойственно и некоторым видам животных, обладающих цветовым зрением. Но для человека чистого ощущения цвета не существует. Мы всегда видим цвет в определенном окружении, на том или ином фоне, в связи с предметной формой. В ощущении принимает участие и сознание. На качество восприятия цвета оказывает влияние состояние глаза, установка наблюдателя, его возраст, воспитание, общее эмоциональное состояние.

Однако все это лишь до известной степени изменяют качество восприятия, они только смещают его в ту или иную сторону. Красный цвет, например, будет в любых обстоятельствах восприниматься как красный, за исключением случаев патологии зрения. Рассмотрим некоторые особенности восприятия цвета.

ЧУВСТВИТЕЛЬНОСТЬ ГЛАЗА. Так как основные различия между воспринимаемыми цветами сводятся к различию по светлоте, цветовому тону и насыщенности, то важно установить способность глаза различать изменения цвета по каждому из этих параметров.

При исследовании чувствительности глаза к изменению цветового тона было установлено, что глаз неодинаково реагирует на изменение длины волны в различных участках спектра. Изменение цветности наиболее заметно в четырех частях спектра, а именно в зелено-голубой, оранжево-желтой, оранжево-красной и сине-фиолетовой. К средней зеленой части спектра и к его концу, красному и фиолетовому, глаз наименее чувствителен. При определенных условиях освещения человеческий глаз различает до 150 цветовых оттенков. Число замечаемых глазом различий по насыщенности неодинаково для красной, желтой и синей поверхности и колеблется от 7 до 12 градаций.

Наиболее чувствителен глаз к изменению яркости – различает до 600 градаций. Способность к различию цветовых тонов не является постоянной и зависит от изменений цветовых объектов по насыщенности и яркости. При уменьшении насыщенности и увеличении или уменьшении яркости мы различаем цветовые тона хуже. При минимальной насыщенности хроматические цвета сводятся к двум различным тонам желтоватому (теплому) и синеватому (холодному). Подобным образом обедняется цветовая гамма и тогда, когда хроматические цвета становятся очень близки к белому или черному. Поэтому нельзя определить возможное общее число воспринимаемых глазом цветов путем простого перемножения количеств различных цветовых тонов, степеней насыщенности и светлоты.

Чувствительность глаза к отдельным цветам изменяется не только количественно, но также и качественно в зависимости от освещенности. При слабой освещенности не только понижается чувствительность глаза к различию цветовых тонов вообще, но и происходит смещение этой способности в сторону коротковолновой части спектра (синие и фиолетовые)

СМЕШЕНИЕ ЦВЕТОВ. Смешение цветов – одна из самых главных проблем теории цвета, потому что со смешением цветов человеческое зрение имеет дело постоянно. Ощущение цвета поверхности вызывается в нас не потоком световых волн одной какой-либо длины, а совокупностью различных по длине световых волн. Какой цвет мы при этом воспринимаем, будет зависеть от того, какой длины и интенсивности волны преобладают в потоке излучаемого света.

Если два окрашенных пятна располагаются рядом, то на определенном расстоянии они создают впечатление единого цвета. Такое смешение носит название АДДИТИВНОГО (слагательного). Если же на окрашенную поверхность накладывается другая цветная прозрачная пластинка, тогда смешение происходит в результате вычитания или отсеивания некоторых волн. Такое смешение называется вычитательным или СУБСТРАКТИВНЫМ. Выявлены следующие три основных закона оптического смешения.

1. Для всякого цвета имеется другой, дополнительный к нему. Будучи смешаны, эти два цвета дают в сумме ахроматический (белый или серый) цвет.

2. Смешиваемые (не дополнительные) цвета, лежащие по цветовому кругу ближе друг к другу, чем дополнительные, вызывают ощущение нового цвета, лежащего между смешиваемыми цветами. Красный и желтый дают оранжевый. Второй закон имеет наибольшее практическое значение. Из него вытекает тот факт, что путем смешения трех основных цветов в различных пропорциях можно получить практически любой цветовой тон.

3. Третий закон говорит о том, что одинаковые цвета дают и одинаковые оттенки смеси. Здесь имеется в виду случаи смешения одинаковых по цвету, но разных по насыщенности или по светлоте, а также смешение хроматического с ахроматическим.

ВЗАИМОДОПОЛНИТЕЛЬНЫЕ ЦВЕТА. Термин взаимодополнительные цвета весьма популярен в искусствоведении. Всегда отмечается исключительная роль этих цветов в создании цветовой гармонии.

Обычно ими называют три пары: красный – зеленый, синий – оранжевый, желтый – фиолетовый, не принимая во внимание, что каждое из этих родовых названий включает в себя большой диапазон цветовых тонов и не всякий зеленый является взаимодотолнительным ко всякому красному.

В цветоведении взаимодополнительность цветов определяется как способность одного какого-либо цвета дополнить другой до получения ахроматического тона, т.е. белого или серого, в результате оптического смешения. Вычислено, что дополнительной будет каждая пара цветов, длины волн которой относятся между собой как 1: 1,25.

Будучи же сопоставлены, эти пары представляют наиболее гармоничные сочетания и взаимно повышают насыщенность и светлоту друг друга, не меняя цветового тона.

КОНТРАСТ. Контраст можно определить как противопоставление предметов или явлений, резко отличающихся друг от друга по качествам или свойствам. А суть контраста в том, что будучи вместе, эти противоположности вызывают новые впечатления, ощущения и чувства, которые не возникают при рассмотрении их отдельно.

Контрастирующие цвета способны вызвать целую цепь новых ощущений. Например, белое и черное вызывают некоторый шок от внезапного перехода от белизны к черноте, кажущимися изменениями размеров и светлоты, возникновением пространственного эффекта и т.п.

Контраст – важное формообразующее средство, создает ощущение пространства. Цветовая гармония, колорит и светотень непременно включают в себя элементы контраста.

Леонардо да Винчи был первым, кто описал контраст: «Из цветов равной белизны и равно удаленных от глаза тот будет на вид чистым, который окружен наибольшей темнотою, и, наоборот, та темнота будет казаться более мрачной, которая будет видна на более чистой белизне, каждый цвет лучше распознается на своей противоположности». Контрасты разделяются на два вида: ахроматический (световой) и хроматический (цветовой). В каждом их них различаются контрасты: одновременный, последовательный, пограничный (краевой).

ОДНОВРЕМЕННЫЙ СВЕТОВОЙ КОНТРАСТ. «Чем ночь темнее, тем звезды ярче». Суть явления в том, что светлое пятно на темном фоне кажется еще более светлым – положительный контраст, а темное на светлом – темнее (отрицательный контраст), чем оно есть на самом деле. Если пятно окружено полем другого тона (светлее или темнее), то его называют реагирующим полем, а фон – индуктирующим. Реагирующее поле меняет свою светлоту сильнее, чем индуктирующее поле.

Если светлоты этих полей будут велики, то действие контраста заметно снижается. Явление светового контраста заметны и тогда, когда поля одного цвета, но разной светлоты. Такой контраст называется монохроматическим. В этом случае меняется не только светлота, но и насыщенность. В сущности, с одновременным контрастом мы имеем дело и при сочетании хроматических и ахроматических цветов.

Эксперименты, проведенные Б.Тепловым, показали, что эффект одновременного контраста зависит от абсолютной яркости индуктирующего и реагирующего полей и от разницы яркости этих полей. При очень низких и очень высоких различиях, контраст отсутствует или весьма незначителен.

Он зависит и от величины взаимодействующих полей. Чем меньше световое пятно, тем сильнее оно подвергается высветлению. Установлено также, что при равной яркости большее реагирующее поле всегда кажется темнее маленького индуктирующего. Контраст зависит также от расстояния между полями. Сила контраста убывает по мере увеличения расстояния между полями.

Эффект контраста зависит от формы реагирующего поля: круг или кольцо, квадрат или буква на одном и том же поле при одинаковых условиях будут сопровождаться различной силы контрастом.

Если мы имеем два рядом расположенных пятна, которые не относятся между собой как фигура и фон, то контраст, который они вызывают, образуется по принципу равного взаимодействия. Однако в данном случае контраст имеет тенденцию к исчезновению. Пока эти пятна достаточно велики и мы их рассматриваем одновременно, взаимодействие их остается заметным, при этом мы замечаем и пограничный контраст. Но если эти пятна достаточно малы или воспринимаются с большого расстояния, то возникает их оптическая смесь, и мы видим общий серый тон.

Явление одновременного светового контраста сопровождается не только потемнением или посветлением реагирующего поля, но и кажущимся изменением размеров. Светлое пятно на темном фоне кажется еще светлее и больше, а темное – на светлом как бы уменьшается в размерах и темнеет.

ОДНОВРЕМЕННЫЙ ЦВЕТОВОЙ КОНТРАСТ. Эффект одновременного цветового контраста возникает при взаимодействии двух хроматических цветов или хроматического с ахроматическим. Это более сложное явление, чем световой контраст, т.к. изменения по цветовому тону сопровождаются одновременным изменением по светлоте и насыщенности, причем последние могут быть более заметными, чем сам контраст.

Если требуется определить действие цветового контраста по цветовому тону, то необходимо, чтобы контрастирующие тона были близки по светлоте и насыщенности. Тогда нетрудно заметить, что при сопоставлении различных цветов в них появляются новые качества и дополнительные оттенки.

Существует тенденция цветов в контрасте отдаляться друг от друга. Например, желтый на оранжевом светлее, зеленеет, холоднеет. Оранжевый на желтом краснеет, темнеет, теплеет. Другого рода явления происходят при контрасте взаимодополнительных цветов. При их сопоставлении не возникают новые оттенки, но сами цвета увеличивают свою насыщенность и яркость. При рассмотрении их издалека, срабатывает закон аддитивного смешения, и сопоставляемые цвета тускнеют и, в конце концов, сереют.

ПОГРАНИЧНЫЙ КОНТРАСТ. Возникает на границах двух смежных окрашенных поверхностей. Наиболее четко проявляется, когда рядом две полосы, различные по светлоте или по цвету. При световом контрасте часть светлого участка, который ближе к темному, будет светлее, чем дальняя. Создается эффект неровности (ступеньки) и объема.

При хроматическом контрасте соседние тона меняются так же как и при одновременном контрасте, т.е. желтое пятно около красного зеленеет, но чем дальше от края, тем этот эффект становится слабее. Можно сказать, что одновременный и пограничный контрасты всегда выступают вместе.

Контрастное действие цветов исчезает, если между ними проложить хотя бы очень узкую светлую или темную полоску (она называется просновка), т.е. обязательным условием контраста является расположение цветов рядом.

Итак, при краевом и одновременном контрасте цвет воспринимается более темным, если он окружен более светлыми цветами и светлеет в окружении темных.

К цветовому пятну на цветном фоне как бы примешивается цвет, дополнительный к цвету окружения. Если цвет находится на фоне своего дополнительного цвета, то он воспринимается более насыщенным.

Если на цветной фон положить пятно того же цвета, но меньшей насыщенности, то его насыщенность еще больше уменьшится. Чем более насыщен цветовой фон, тем больше он действует на «соседей». Особенно это заметно при одинаковой или близкой светлоте.

Цвета, находящиеся на концах диаметра спектрального круга, не вызывают при сопоставлении изменения оттенка, зато становятся ярче от этого соседства. Расположенные близко в спектральном круге цвета слабо контрастируют, но приобретают новые оттенки. Все холодные цвета дают больший контраст, чем теплые. Контраст зависит от размеров полей; до определенного предела величина контраста увеличивается пропорционально расстоянию, после которого начинают действовать законы оптического смешения.

Эффективность контраста находится в обратной зависимости от яркости. Сильное освещение уничтожает действие контраста, а слабое освещение усиливает. Однако эффект при восприятии пары остается неизменен при любом освещении. На черном или темно-сером фоне цвета снижают свою насыщенность, а на белом или светло-сером – повышают.

Явление краевого и одновременного контрастов обязывает находить гармонию между соседними цветами, усиливая или уменьшая их контрастное взаимодействие. Например, за счет изменения размера взаимодействующих площадей; удаления или сближения цветных поверхностей; создавая или уничтожая между ними просновку и т.п.

ПОСЛЕДОВАТЕЛЬНЫЙ КОНТРАСТ. Если посмотреть на солнце, а затем перевести взгляд на белую стену, то некоторое время видится темное пятно – это размытое изображение солнца на сетчатке. Последовательный контраст заключается также и в том, что при переводе взгляда с одного красочного пятна на другое, мы наблюдаем на последнем несвойственный ему оттенок. Ученые объясняют это остаточным раздражением сетчатки глаза при восприятии предыдущего цвета, ибо цветовое ощущение имеет длительность и продолжается некоторое время, когда предмет уже исчез. В результате, когда мы переводим взгляд с ярко-красной поверхности на серую или белую, то видим зеленоватый оттенок на светлом, т.е. наблюдается не красный, а дополнительный ему зеленый цвет. Можно с полной уверенностью сказать, что последовательный контраст – это результат цветного утомления глаза от воздействия на него цвета. Это явление называется адаптацией.

Если цветовой раздражитель определенное время действует нам на глаза, то чувствительность к этому цвету начинает понижаться. Причем, цветовое утомление тем больше, чем ярче и насыщеннее цвет. Малонасыщенные цвета не создают последовательного контраста. Явление цветового контраста необходимо учитывать визажистам, особенно при работе над вечерним или подиумным макияжем, а также стилистам и парикмахерам при подборе цвета волос и одежды. Последовательный контраст выражается и в том, что воспроизводится и форма предыдущего цветового пятна.

ЦВЕТ ПОВЕРХНОСТИ. На первый взгляд кажется, что цвет предмета это их неотъемлемое свойство, такое же, как размер, вес, форма. Однако при определенных условиях освещения желтый предмет может казаться оранжевым или зеленоватым, синий – черным или фиолетовым. При отсутствии освещения вообще все предметы будут казаться черными. Но, несмотря на незначительные изменения цвета, мы понимаем, что помидор – красный, а трава – зеленая.

Физической основой, определяющей цвет предмета, служит способность поверхности определенным образом сортировать падающие на нее лучи света, т.е. какие-то лучи поглощать, а какие-то отражать, что и дает цвет поверхности. Но отражение и поглощение еще зависят от многих других стимулов, что делает практически невозможным увидеть цвет в чистом виде.

От спектрального состава отражаемого поверхностью света зависит и кажущаяся яркость. Все голубые, зеленые, фиолетовые тона делают поверхность темнее, а желтые и красные, наоборот, придают ей яркость. Желтое электрическое освещение добавляет красному насыщенности, оранжевый краснеет, желтый теряет свою насыщенность, сереет, а желто-синие становятся почти черными.

Художники-пейзажисты давно подметили, что зеленые листья при вечернем освещении слегка краснеют. Оказывается, листья поглощают не все красные лучи спектра, а лишь их часть, другую отражая. И, в то время, как все зеленые предметы вечером темнеют, листья деревьев приобретают красноватый оттенок.

Поверхностный цвет – это цвет, воспринимаемый в единстве с фактурой предмета. Пространственный цвет - это цвет удаленных от нас предметов, цвет разнообразных сред: неба, облаков, тумана, воды.

Плоскостным называется цвет, принадлежащий какой-либо плоскости, находящейся на таком расстоянии от глаза, что особенности ее структуры глазом не ощущаются, но благодаря сочетанию своей формы и действию контраста она выделяется на каком-то фоне и воспринимается как плоскость. Например, можем видеть разные поверхности одинаково зеленого цвета – трава и фанера на ней лежащая, различить их издали невозможно. На этой неспособности глаза различать фактурные качества на расстоянии, основывается маскировка.

По мере удаления от наблюдателя поверхностный цвет изменяется в зависимости от цвета той прозрачной среды, в которой он находится. Светлота будет понижаться у белого и желтого и повышаться у темных. Кроме того, совокупность цветов в результате оптического смешения будет восприниматься как один результирующий цвет.

ВЫРАЗИТЕЛЬНОСТЬ ЦВЕТА. Наиболее яркое живое описание основных цветов можно встретить у великого Гете, в его трудах, посвященных цвету. Это не просто мнение и впечатление одного человека, это слова поэта, который знал, как выразить то, что видят его глаза. Гете утверждал, что все цвета находятся между полюсами: желтого (наиболее близкого дневному свету) и синего (наибольшего оттенка темноты).

Положительные или активные цвета – желтый, оранжевый, красный – создают активное оживленное настроение. Синий, красно-синий, фиолетовый – отрицательные пассивные цвета – настроение тоскливое, безмятежное, мягкое, спокойное.

Красный, по мнению Гете, эмоциональный, волнующий, стимулирующий цвет. Это цвет королевской власти, он объединяет все цвета. В чисто красном – благородство, он создает впечатление как серьезности и достоинства, так и прелести и грации.

Желтый – спокойный, безмятежный, веселый, очаровывающий. По определению Гете желтый цвет обладает легкостью, производит, безусловно, теплое впечатление и вызывает благодушное настроение. Гете считает, что желтый цвет можно использовать для выражения стыда и презрения. А, по мнению великолепного русского живописца Кандинского, желтый цвет никогда не несет в себе глубокого значения. Желтый способен выразить у него насилие, бред умалишенного, а ярко-желтый – ассоциируется со звуком горна.

Оранжевый у Гете – дает глазам чувство теплоты и наслаждения. Ярко-оранжевый рвется к органам зрения, производит шок. А у Кандинского – олицетворяет силу, энергию, честолюбие, триумф.

Синий – холодный, пустой, но выражающий спокойствие. Гетовский синий всегда приносит что-то темное, синяя поверхность как будто уплывает от нас вдаль. Темно-синий – погружение в глубокое раздумье обо всех вещах, не имеющих конца. Голубой цвет создает спокойствие, а фиолетовый вызывает беспокойство, нетерпенье и даже бессилие.

Зеленый цвет – удачно сбалансированный - показывает устойчивость, свойственную чистым цветам, дает реальное удовлетворение, совершенную тишину и неподвижность.

ГАРМОНИЯ ЦВЕТА. Бог сотворил все мерою и числом – все в мире должно быть гармонично. Термин «гармония» как эстетическая категория возник в Древней Греции. Проблемы гармонии интересовали людей со времени Платона, Аристотеля, Теофраста до сегодняшнего дня. Эта категория теснейшим образом связана с такими понятиями как связанность, единство противоположностей, мера и пропорциональность, равновесие, созвучие, сомасштабность человеку. Кроме того, гармоническое – это обязательно возвышенное и прекрасное.

В общем понятии гармонии возможно выделить такие ее частные подразделения, как гармония звуков, форм, цветов. Термином цветовая гармония часто определяют приятное для глаз, красивое сочетание цветов, предполагающее определенную согласованность их между собой, определенный порядок в них, определенную соразмерность и пропорциональность.

Цветовые пятна на поверхности взаимосвязаны. Каждый отдельный цвет уравновешивает или выявляет другой, а два вместе, влияют на третий. Иногда изменение даже одного цвета в композиции ведет к ее разрушению.

Теория цветовой гармонии не может быть сведена к тому, какой цвет с каким гармонирует, она требует ритмичной организации цветовых пятен. Бессистемное нагромождение цвета создает пестроту.

Попытки построить нормативную теорию цветовой гармонии предпринимались на протяжении всего Х1Х века и позже.

Для создания классической цветовой гармонии необходимо выполнять некоторые правила подбора цветов

    в гармонии должны быть заметны первоначальные элементы многообразия, т.е. присутствовать красный, желтый и синий цвета

    многообразие тонов должно быть достигнуто через разнообразие светлого и темного

    тона должны быть в равновесии, ни один не должен выделяться – это и есть цветовой ритм

    в больших цветовых композициях цвета должны по порядку следовать один за другим так, как в спектре или радуге (мелодия единства)

    чистые краски следует применять экономно из-за их яркости и лишь в тех местах, которую хочется выделить.

Это конечно очень формальный подход к гармонии, но и он имеет право на существование.

Более общие правила при создании цветовой гармонии заключаются в следующем:

    выделение наиболее красивых изолированных цветов и определение условий, в которых эти цвета наиболее выигрышно смотрятся

    выбор некоторой последовательности теплой и холодной гаммы цветов

    сопоставление цветов по контрасту, создание условий в которых каждый цвет кажется красивее сам по себе.

Существенным фактором, определяющим качество цветовой гармонии является соотношение цветовых пятен по занимаемой площади. Существуют определенные пропорциональные соотношения площадей пятен, необходимые для достижения целостности и единства впечатлений при одинаковой насыщенности и светлоте. В случае же контраста по светлоте этот закон приобретает еще большую силу. Так, например, для уравновешивания большого светлого пятна достаточно в несколько раз меньшее по площади, но насыщенное, яркое пятно, контрастное по цвету и светлоте.

Интересным моментом является и цветной фон, на котором можно создать

композицию, например, небольшой гармоничный рисунок может потеряться на неподходящем ему поле. А если этот рисунок увеличить, то он может полезть вперед.

Небезразлично и в какой последовательности будут располагаться цветовые пятна. Неуравновешенность или однообразие в ритме тоже может привести к отрицательному эффекту (пуговицы или украшения на одежде).

Не стоит забывать, что существует взаимодействие между очертаниями пятна, его

формой и цветом. Часто форма подчиняется цвету и наоборот: «острые» цвета сильнее по действию в треугольниках (желтый цвет прекрасно смотрится в геометрических формах). А, склонные к сильному воздействию красный и синий, цвета очень подходят для округлых форм. Если взять ряд квадратов, кругов и треугольников и окрасить их в разные цвета, то можно заметить, как форма и цвет взаимодействуют друг с другом. Круг может приобретать углы и грани, а квадрат наоборот, терять углы и приобретать вогнутость сторон.

ПСИХОЛОГИЧЕСКАЯ ТЕОРИЯ ЦВЕТОВОЙ ГАРМОНИИ

Гете сделал попытку охарактеризовать чувственно-эмоциональное воздействие не только отдельных цветов, но и их разнообразных сочетаний. Основным, определяющим признаком качества цветовой гармонии им была признана целостность цветового впечатления. Согласно Гете, глаз неохотно терпит ощущение одного какого-либо цвета и требует другого, который составил бы с ним целостность цветового круга.

    цвета, стоящие на концах диаметра спектрального круга, всегда воспринимаются как гармоничные

    «характерными» называют сочетания цветов, расположенных на хордах с проскакиванием одного цвета (все характерное возникает только благодаря своему выделению из целого)

    сопоставление цветов на короткой хорде – бесхарактерны, они не могут произвести значительного впечатления

Гете заметил, что впечатление от сочетания цветов может быть различным в зависимости от разности или одинаковости их светлот и от их насыщенности. И еще Гете заметил, что теплые цвета выигрывают при сопоставлении с черным, а холодные – с белым.

ГАРМОНИЯ ВЗАИМОДОПОЛНИТЕЛЬНЫХ ЦВЕТОВ

Это самые гармоничные сочетания. Гармоничность сочетания взаимодополнительных цветов может быть объяснена психофизическими закономерностями зрения, на которые обратил внимание еще Ломоносов и, на основе которых возникла трехкомпонентная теория цветового зрения.

Суть: наш глаз, имеющий три цветообразующих приемника, всегда требует их совместной деятельности – он как бы нуждается в цветовом балансе. А поскольку один из пары взаимодополнительных цветов представляет сумму двух основных, то в каждой паре оказывается наличие всех трех цветов, образующих равновесие. В случае сочетания других цветов, этот баланс отсутствует, и глаз испытывает цветовое «голодание».

Возможно, на этой физиологической основе и возникает определенная неудовлетворенность, отрицательная эмоциональная реакция, величина которой будет зависеть от того, насколько заметно это нарушение баланса.

Для человеческого глаза привычно воспринимать полный комплект цветов, и в повседневной жизни движение глаз регулирует зрительное восприятие таким образом, чтобы видеть как можно больше цветов, так как действие на глаза одного цвета вначале просто неприятно, затем начинает раздражать, а потом, в зависимости от яркости и длительности восприятия, может привести к резко отрицательной реакции и даже психологическому расстройству.

ЦВЕТОВАЯ КОМПОЗИЦИЯ. Композиция цветовых пятен, построенная с учетом всех рассмотренных закономерностей цветовой гармонии, будет ограничена, если не будет служить главному – созданию образа.

Композиционная функция цвета заключена в его способности акцентировать внимание зрителя на наиболее важной детали. Очень существенна для создания цветной композиции, ее способность создавать за счет светлоты, цветового тона и насыщенности свой рисунок.

Цветовая композиция требует соответствующей ритмичной организации цветовых пятен. Бессистемное нагромождение большого числа цветов, даже с учетом их сочетаемости, создает пестроту, раздражает и затрудняет восприятие.

Цветовая композиция – это некое целое, в котором все согласуется и соответствует друг другу, создавая приятное впечатление для глаз.

Понятие гармонии необходимо включает в себя и дисгармонию как свою антитезу.

Если для Античности, Средневековья, Возрождения именно гармония служила идеалом, то уже в эпоху Барокко гармонии стали часто предпочитать диссонанс. В наш век экспрессионизм решительно отвергает принципы классической гармонии и, в поисках большей выразительности, часто обращаются к заведомо или даже нарочито дисгармоничным сочетаниям. Однако это не умаляет значения важности изучения классических принципов, т.к. это ключ к пониманию цвета и цветовых композиций вообще.

КОЛОРИТ. Существенную роль в создании любой композиции играет объединение цветов. Обычно объединяются между собой цвета, равные по светлоте и близкие друг другу по цветовому тону. Когда цвета тонально объединены между собой, то замечаются их качественные изменения, проявляющиеся в особой их звучности. Цвет, выпадающий из общей тональности, не согласованный с нею, кажется чуждым, мешает восприятию образа.

Гармоническое сочетание, взаимосвязь, тональное объединение различных цветов называется колоритом. Колорит раскрывает нам красочное богатство мира.

Термин «колорит» вошел в художественный лексикон в начале 18 века и почти сразу появился и утвердился в русском художественном словаре. Он происходит от латинского слова «соlor» - цвет, краска.

Колорит характеризует некую оптическую совокупность всех цветов, рассматриваемых с некоторого расстояния. Именно в этом смысле принято говорить о теплом, холодном, серебристом, мрачном, скучном, веселом, прозрачном, золотистом и т.п. колорите – особенности цветового строя, предпочтению тем или иным цветам, выражающим образ.

Однако следует отдавать должное и тому факту, что общий цветовой тон, который мы называем колоритом, может возникать совершенно случайно, помимо воли создателя и может быть присущ любому цветовому сочетанию.

Развитие науки о цвете, а также истории и теории искусства в 19 и 20 веках приводит к более глубокому и всестороннему анализу понятия «колорит». Становится понятным, что не всякий работающий с цветом, пусть даже и очень красиво и изящно, является колористом. Колорит – это особая способность художника, в широком смысле этого слова, распоряжаться цветом, настолько загадочная и непонятная, что появились даже высказывания о «тайне» колорита, «магии» колорита, о его непостижимости. А среди художников стала излюбленной поговорка: «Рисунку можно научиться, а колористом нужно родиться».

Колорит теснейшим образом связан с цветом, однако совокупность цветов еще не определяет колорит. Колорит – это система цветов, но система и сумма - не одно и то же. Система закономерна, обладает единством, целостностью и воспринимается как единое целое.

Нет смысла говорить об эмоциональной роли цвета вообще. Один и тот же цвет, будучи цветом различных предметов или объектов воспринимается совершенно по-разному. Цвет в жизни воспринимается не в его колориметрических характеристиках, а в зависимости от окружающих цветов и освещения, причем он всегда подчинен общей тональности.

Дени Дидро приводит пример: «Сравните сцену природы днем при сияющем солнце и при пасмурном небе. Там сильнее свет, цвет и тени, здесь все это бледное и серое. При изменении освещения и окружения неминуемо меняются характеристики цвета. Можно сказать, что свет является общим колоритом данного пейзажа».

Рассмотрим изменение цвета при различном освещении:

    в сумерках или в пасмурный день, когда сила освещенности сравнительно мала, цвета существенно темнеют, теряя насыщенность

    наиболее верное представление о цвете можно составить только при дневном свете без солнца; в комнате днем, по мере удаления от окна, цвета слабеют, сереют, теряя насыщенность

    ночью вообще трудно определить цвет, а утром вначале становятся заметны голубые, синие, зеленые, потом желтые и самыми последними набирают насыщенность красные цвета

    при солнечном свете все цвета хорошо видны; при ярком свете в полдень все цвета высветляются. От солнечного света наиболее страдают холодные цвета: голубой, синий, зеленый – они слегка блекнут, фиолетовый краснеет. Теплые цвета - желтый, оранжевый и красный – меняются меньше

    к вечеру цвета вновь плотнеют и темнеют, последовательно меркнут желтый, оранжевый, зеленый, синий, дольше всех остается виден холодный красно-фиолетовый цвет

    желтое электрическое освещение затемняет все цвета и придает им чуть красноватый оттенок, создавая теплый колорит

    «дневной» электрический свет тоже меняет все цвета, делая их более холодными и темными

Цвет лучей того или иного источника света объединяет цвета, делая их родственными и соподчиненными. Как бы ни были разнообразны краски в жизни, цвет освещения, присутствующий на всех предметах и деталях объединяет их колористически. От освещения меняется не только яркостные характеристики цвета, но и прочие качества, включая фактурные характеристики. Нельзя рассматривать цвет независимо от предметных связей и от освещения. Тональная соподчиненность определяет характер каждого цвета цветовой системы, который не исчерпывается тремя основными характеристиками: светлотой, насыщенностью и цветовым тоном. Сюда необходимо прибавить плотность цвета, его весовые качества, пространственные и другие свойства. В некоторых случаях цвет достигает значения символа.

Цвет приобретает определенную выразительность только, когда вступает в содружество с остальными цветами, т.е. в систему цветов, а это и есть колорит. Совокупность цветов, находящихся в определенных соотношениях друг с другом, наделенных определенным смыслом, образует конкретный, чувственно воспринимаемый строй, способный выразить цель и смысл данной композиции.

Чтобы верно создать образ нужно научиться видеть целостно. Так в руководстве по живописи говорится, что умение видеть и постановка глаза художнику (а мы добавим и имиджмейкеру) нужны, чтобы замечать пластические качества, объемную форму, строение, цвет, светотени, фактурные качества, а также, чтобы находить значительное и красивое и уметь все это показать.

При обычном видении мы рассматриваем только то, на что направлен взгляд. «При широком охвате видимого человек не всматривается, - писал Б.Иогансон, - а видит обобщенно… и, охватывая взглядом одновременно все, вдруг замечает то, что особенно ярко, а что еле заметно. Нужно идти от целого, чтобы получить возможность сравнивать детали, чего лишается человек, идущий от детали».

Константин Коровин: - «Воспитывай глаз сначала понемногу, потом шире распускай глаз, а в конце концов все надо видеть вместе. И тогда то, что не точно было взято, будет фальшивить, как неверная нота в оркестре».

Необходимо научиться отвлекаться от заранее известного, чтобы увидеть те отношения в которых находятся детали в момент наблюдения.

ПСИХОФИЗИЧЕСКОЕ ВОЗДЕЙСТВИЕ ЦВЕТА И ЕГО СИМВОЛИКА

«Цвета есть раздражающие и успокаивающие, кричащие, спорящие друг с

другом и живущие ласково один возле другого. В их борьбе или согласии

и есть воздействие цвета на человека через чувство зрения».

К.Петров-Водкин

Вопросами эмоционального воздействия цвета на человека интересовались многие практики и теоретики искусства – Леонардо да Винчи, И.Гете, Э. Делакруа, М.Дерибере, К.Юон, И.Грабарь и др.

Физиологам давно известно о независящем от настроения субъекта физиологическом влиянии цвета. Заметим, что действие каждого цвета и специфика его внутреннего значения не зависят от отношения человека к нему. Цвет может нравиться или не нравиться, но характер его влияния, специфика его воздействия на психику остаются неизменными, вне зависимости от состояния организма в момент воздействия. Таким образом, символическое значение цвета, его «психологический код» действительно объективны и не зависят от положения того или иного цвета в ряду индивидуального предпочтения.

Каждый цветовой оттенок производит одно и то же действие на любой живой организм, вызывает вполне определенный сдвиг в состоянии всякой биосистемы, будь то мышь или человек.

«В своих самых общих элементарных проявлениях, независимо от строения и форм того материала, на поверхности которого мы его воспринимаем, цвет оказывает известное воздействие на чувство зрения, а через него и на душу, - писал Гете. Цвета действуют на душу: они могут вызывать чувства, пробуждать эмоции и мысли, которые нас успокаивают или волнуют, они печалят или радуют». До сих пор не разрешена загадка цвета – почему и как именно влияет он на настроение и поведение человека. Что позволило Василию Кандинскому назвать живопись «цветовым инструментом состояния души»? Почему человек столь чутко откликается на всевозможные цветовые коды окружения?

Известный психиатр В.М.Бехтерев утверждал: «Умело подобранная гамма цветов способна благотворнее действовать на нервную систему, чем иные микстуры». Аристотель писал: «Все живое стремится к цвету… Цвета по приятности их соответствий могут относиться между собой подобно музыкальным созвучиям и быть взаимно пропорциональными». Ивли Грант заметил: «Чем больше смотришь на этот мир, тем больше убеждаешься в том, что цвет был создан для красоты, и красота эта – не удовлетворение прихоти человека, а необходимость для него».

Действительно, цвет способен возбуждать и подавлять, возносить и низвергать, лечить и облагораживать. Приведем несколько выдержек из замечательной книги Мориса Дерибере «Цвет в деятельности человека»:

«Физиологическое и психофизическое воздействие цвета на живые существа позволило разработать богатую технику цветотерапии… Особое внимание привлекал красный цвет, который использовали еще средневековые врачи для лечения ветряной оспы, скарлатины, кори и некоторых других кожных заболеваний. Изучались и другие цветовые лучи. Лечение невралгических явлений светом началось очень давно. Вначале оно было эмпирическим, но после наблюдений Плезантона над болеутоляющим свойством света, пропущенного через голубой фильтр, и наблюдений Поэга над тем же свойством фиолетового цвета, оно стало более точным. В начале нашего века несколько русских и немецких терапевтов подтвердили наблюдения о благоприятном воздействии голубых и фиолетовых лучей при лечении невралгических заболеваний…»

Зеленый цвет был использован Пото при лечении нервных заболеваний и психопатических расстройств. Он считал, что зеленый цвет действует в тех случаях, когда нужно дисциплинировать ум и тело и вынудить больного контролировать свои поступки.

Возможности цветовоздействия попросту фантастичны. Прямое облучение светом, использование лазерных устройств, создание однотонных интерьеров, применение пропускаемых через самоцветы светотоков, направленное влияние на точки акупунктуры, целевое воздействие на активные зоны радужки глаза – сегодня существует множество методов введения цветоэнергий в информационно-энергетический метаболизм человека. Причем все эти приемы эффективны вне зависимости от степени осознания человеком характера и направленности цветоэнергетического воздействия. Цвет, как и звук, является естественным интегратором физиологических и психических процессов

О влиянии цвета на психику человека и его использовании в медицине пишет М.Дерибере по результатам исследования доктора Подольского: « Зеленый цвет влияет на нервную систему. Это болеутоляющий, гипнотизирующий цвет. Эффективен при нервной раздражительности, бессоннице и усталости, понижает кровяное давление поднимает тонус, создает ощущение тепла, расширяя капиллярные сосуды. Облегчает невралгии и мигрени, связанные с повышенным кровяным давлением. Зеленый успокаивает, и его употребление не дает никаких вредных последствий

Голубой цвет – антисептический. Он уменьшает нагноения, может быть полезен при некоторых ревматических болях, при воспалениях и даже при лечении рака. Чувствительного человека голубой облегчает больше, чем зеленый. Однако от слишком долгого облучения голубым цветом возникает некоторая усталость или угнетенность.

Оранжевый цвет стимулирует чувства и слегка ускоряет пульсацию крови. Не влияет на кровяное давление, создает чувство благополучия и веселья, Имеет сильное стимулирующее действие, но может утомить.

Желтый цвет стимулирует мозг. Может быть эффективен в случае умственной недостаточности. Долгое облучение препятствует колебаниям в течении болезни.

Красный цвет – теплый и раздражающий. Он стимулирует мозг, эффективен для меланхоликов.

Фиолетовый действует на сердце, легкие и кровеносные сосуды, увеличивает выносливость ткани. Аметистовый цвет имеет стимулирующее действие красного и тоническое действие голубого.

В течение длительного времени исторического развития в сознании людей закрепились определенные ассоциативные связи различных цветов или цветовых сочетаний с различными жизненными ситуациями и явлениями. В отдельные периоды истории изобразительного искусства символике цвета принадлежала важная роль, например, в средние века.

Белый цвет олицетворял чистоту и непорочность, красный – кровь святого, зеленый – надежду на бессмертие души, голубой цвет символизировал печаль.

Известно символическое значение каждого цвета в русской иконописи, обусловленное различными художественными течениями, как местными, так и привезенными из Византии и от южных славян.

В русской иконописи цвет золота символизировал идеи библейского рая, был символом истины и славы, непорочности и нетленности, олицетворял идею очищения души. Красный цвет в иконописи символизировал прежде всего кровь Иисуса Христа, был символом пламенности, огня, жизни. Пурпурный цвет в искусстве Византии олицетворял идею императорской власти. Голубой – идеи созерцательности, цвет неба и горного мира. Зеленый – идеи надежды, обновления, юности. Часто применялся и применяется для обозначения райского сада. Белый в русской иконописи символизировал причастность к божественному свету.

Известно символическое значение цвета и в народном творчестве, которое складывалось под воздействием окружающей природы. У многих народов красный – символ солнца и любви, зеленый – надежды, белый – чистоты и невинности.

Вывод напрашивается сам собой: можно управлять живой системой и психическими процессами самым естественным образом, влияя наиболее привычным путем, достигая значительных результатов правильным подбором цветов и формы одежды, причесок, макияжа, интерьера, создавая вокруг себя благоприятную гармоничную цветовую обстановку, без использования синтетических лекарств и сложных физиотерапевтических воздействий.

0

Чтобы видеть, нам нужен свет. Это положение может показаться слишком очевидным, чтобы заслуживать упоминания, однако оно не всегда было столь банальным. Платон думал, что зрительное восприятие существует не потому, что свет проникает в глаз, а потому, что частицы, исходящие из глаз, обволакивают окружающие предметы. Трудно представить себе теперь, почему Платон не попытался разрешить проблему с помощью простых экспериментов. Хотя для философов вопрос о том, каким образом мы видим, всегда был излюбленной темой размышлений и теоретических построений, только за последнее столетие эта проблема стала предметом систематических исследований; это довольно странно, поскольку все научные наблюдения зависят от показаний человеческих органов чувств и главным образом от зрения.

В течение последних 300 лет существовали две соперничавшие теории относительно природы света. Исаак Ньютон (1642-1727) считал, что свет - это поток частиц, в то время как Христиан Гюйгенс (1629-1695) утверждал, что свет представляет собой, по всей видимости, колебание небольших эластичных сферических образований, соприкасающихся друг с другом и перемещающихся во всепроникающей среде - эфире. Любое возмущение этой среды, как он считал, будет распространяться во всех направлениях в виде волны, а эта волна и есть свет.

Полемика относительно природы света - одна из наиболее впечатляющих и интересных в истории науки. Основным вопросом на ранних стадиях дискуссии был вопрос о том, распространяется ли свет с определенной скоростью или он достигает цели мгновенно. Ответ на этот вопрос был получен совершенно неожиданно датским астрономом Рёмером (1644-1710). Он изучал затмение четырех ярких спутников, вращающихся вокруг Юпитера, и обнаружил, что периоды между затмениями нерегулярны и зависят от расстояния между Юпитером и Землей.

В 1675 г. он пришел к заключению, что этот факт определяется временем, которое требуется, чтобы свет, исходящий от спутников Юпитера, достиг глаза экспериментатора; время возрастает с увеличением расстояния вследствие ограниченной скорости света. Действительно, расстояние от Земли до Юпитера равно примерно 299 274000 км - это в два раза больше, чем расстояние от Земли до Солнца; наибольшая временная разница, которую он наблюдал, равнялась 16 мин. 36 сек. -на этот отрезок времени раньше или позже, чем полагалось по расчету, начиналось затмение спутников. На основании несколько ошибочной оценки расстояния до Солнца он подсчитал, что скорость света равна 308 928 км/сек. Современные знания о диаметре земной орбиты позволяют нам уточнить эту величину и считать ее равной 299 274 км/сек, или Зх10 10 см/сек. Скорость света, таким образом, на небольших расстояниях от Земли измеряется очень точно, и теперь мы рассматриваем ее как одну из основных констант Вселенной.

Вследствие ограниченной скорости света и определенной задержки нервных импульсов, поступающих я мозг, мы всегда видим прошлое. Наше восприятие Солнца запаздывает на 8 мин.; всем известно, что наиболее отдаленный из видимых невооруженным глазом объектов - туманность Андромеды уже больше не существует и то, что мы видим, происходило за миллион лет до появления человека на Земле.

Скорость света, равная Зх10 10 см/сек, строго сохраняется только в полном вакууме. Когда свет проходит через стекло или воду или какую-нибудь другую пропускающую свет среду, его скорость уменьшается в соответствии с показателем преломления света (приблизительно в соответствии с плотностью этой среды). Это замедление скорости света исключительно важно, так как именно благодаря этому свойству света призма преломляет свет, а линзы создают изображение. Закон преломления (отклонение луча света в зависимости от изменения показателя преломления) был впервые установлен Снеллиусом, профессором математики, в Лейдене в 1621 году. Снеллиус умер в возрасте 35 лет, оставив свои работы неопубликованными. Декарт сформулировал Закон преломления одиннадцать лет спустя. Закон преломления гласит:

«При переходе света из среды А в среду В отношение синуса угла падения к синусу угла преломления света является константою».

Мы можем видеть, как это происходит, из простой диаграммы (рис. 2, 3): если АВ - луч, проходящий через плотную среду в вакуум (или воздух), то он появится в воздухе под углом i по линии BD.

Закон гласит, что sin i/sin r является постоянной величиной. Эта константа и есть индекс рефракции, или показатель преломления, обозначенный v.

Ньютон думал, что частицы света (корпускулы) притягиваются к поверхности плотной среды, Гюйгенс полагал, что преломление возникает вследствие того, что скорость света уменьшается в плотной среде. Эти предположения были высказаны задолго до того, как французский физик Фуко доказал прямыми измерениями, что скорость света в плотной среде действительно уменьшается. Некоторое время считали, что корпускулярная теория света Ньютона совершенно ошибочна и что свет - это только ряды волн, проходящих через среду, эфир; однако начало нынешнего столетия ознаменовалось важным доказательством того, что волновая теория света не объясняет всех световых явлений. Теперь считается, что свет - это и частицы и волны.

Свет состоит из единиц энергии - квантов. Они соединяют в себе свойства и частиц и волн. Коротковолновый свет содержит большее количество волн в каждом пучке, чем длинноволновый. Этот факт находит свое отражение в правиле, согласно которому энергия одного кванта является функцией частоты, иначе говоря, E = hv, где Е - это энергия в эрг/ сек; h - небольшая постоянная величина (константа Планка), а υ частота излучения.

Когда свет преломляется призмой, каждая частота отклоняется под несколько иным углом, так что из призмы пучок света выходит в виде веера лучей, окрашенных во все цвета спектра. Ньютон открыл, что белый свет состоит из всех цветов спектра, разложив солнечный луч на спектр и затем обнаружив, что он может вновь смешать цвета и получить белый свет, если пропускать спектр через вторую сходную призму, установленную в обратном положении.

Ньютон обозначил семь цветов своего спектра следующим образом: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Никто в действительности не видит синий цвет в чистом виде, еще более сомнителен оранжевый. Подобное деление спектра на цвета объясняется тем, что Ньютон любил число 7, и он добавил оранжевый и синий, чтобы получить магическую цифру!

Теперь мы знаем то, чего не знал Ньютон, а именно, что каждый спектральный цвет, или оттенок, является светом определенной частоты. Мы знаем также, что так называемое электромагнитное излучение, по существу, ничем не отличается от светового. Физическое различие между радиоволнами, инфракрасным светом, видимым светом, ультрафиолетовыми и рентгеновскими лучами состоит в их частоте. Только очень узкий диапазон этих частот возбуждает глаз и дает изображение и ощущение цвета. Диаграмма (рис. 2, 5) показывает, как узка эта полоса в физической картине волн. Взгляните на этот рисунок, ведь мы почти слепы!

Если нам известна скорость света и его частота, то легко подсчитать длину волны, однако в действительности частоту света трудно измерить непосредственно. Легче измерить длину световых волн, чем их частоту, хотя это не относится к низкочастотным радиоволнам. Длина световой волны измеряется путем расщепления света не с помощью призмы, а с помощью специальной решетки из тонких тщательно начерченных по определенным правилам линий, в результате чего также возникают цвета спектра. (Это можно видеть, если держать диск светового поляризатора наклонно, под тупым углом к источнику света: тогда отражение будет состоять из ярких цветов.) Если даны расстояния между линиями, нанесенными по определенному образцу и составляющими решетку, и угол, благодаря которому возникает пучок света данного цвета, то длина волны может быть определена очень точно. Подобным путем можно установить, что голубой свет имеет длину волны приблизительно 1/100 000 см, в то время как длина волны красного света равна 1/175 000 см. Длина световой волны важна для установления границ разрешающей способности оптических инструментов.

Мы не можем невооруженным глазом видеть один квант света, тем не менее рецепторы сетчатки настолько чувствительны, что они могут стимулироваться одним квантом света. Однако, чтобы получить ощущение вспышки света, необходимо несколько (от пяти до восьми) квантов света. Отдельные рецепторы сетчатки настолько чувствительны, насколько это вообще возможно для какого-либо детектора света, поскольку квант - это наименьшее количество лучистой энергии, которое вообще может существовать. К сожалению, прозрачные проводящие среды глаза далеки от совершенства и скрадывают возможности сетчатки воспринимать свет. Только около 10% света, поступающего в глаз, достигают рецепторов, остальное теряется вследствие поглощения и расщепления внутри глаза прежде, чем свет достигнет сетчатки. Несмотря на эти потери, оказывается возможным при идеальных условиях видеть одну свечу на расстоянии 27 353 м.

Идея квантовой природы света имеет важное значение для понимания зрительного восприятия; эта идея вдохновила на ряд изящных экспериментов, направленных на выяснение физических свойств света и его восприятия глазом и мозгом. Первый эксперимент, посвященный изучению квантовой природы света, был проведен тремя физиологами - Гехтом, Шлером и Пиренном в 1942 г. Их работа является сейчас классической. Предполагая, что глаз должен обладать почти или целиком такой же чувствительностью, как это теоретически возможно, они задумали очень остроумный эксперимент, чтобы выяснить, сколько квантов света должно быть воспринято рецепторами, чтобы мы увидели вспышку света. Доказательство основывалось на использовании распределения Пуассона. Оно описывает ожидаемое распределение попаданий в цель. Идея состоит в том, что по крайней мере частично изменения чувствительности глаза во времени связаны не с состоянием самого глаза или нервной системы, а с колебаниями энергии слабого светового источника. Вообразите беспорядочный поток пуль, они не будут попадать в цель с постоянной скоростью, скорость будет варьировать, сходным образом наблюдаются колебания и в количестве квантов света, которые достигают глаза. Данная вспышка может содержать малое или большое число квантов света, и вероятность обнаружить ее будет тем выше, чем больше она превышает среднее число квантов во вспышке. Для яркого света этот эффект несуществен, однако, поскольку глаз чувствителен и к нескольким квантам, колебания энергии света важно учитывать при минимальных величинах этой энергии, необходимых для возникновения ощущения.

Представление о квантовой природе света важно также и для понимания способности глаза выделять тонкие детали. Одна из причин, почему мы можем читать при свете луны только крупный газетный шрифт, состоит в том, что количество квантов, попадающих на сетчатку, недостаточно, чтобы создать полный образ за тот короткий промежуток времени, который требуется глазу, чтобы интегрировать энергию, - это число порядка одной десятой секунды. В действительности это еще не все, что может быть сказано по этому поводу; чисто физический фактор, обусловленный квантовой природой света, способствует появлению хорошо известного зрительного феномена - ухудшению остроты зрения при тусклом свете. До последнего времени это явление трактовалось исключительно как свойство глаза. В самом деле часто довольно трудно установить, следует ли относить тот или иной зрительный феномен к области психологии, физиологии или физики.

Как возникают изображения? Проще всего изображение может быть получено с помощью булавочного отверстия. Рисунок показывает, как это делается. Луч от части предмета х может достигнуть только одной части экрана у - той части, которая расположена на прямой линии, проходящей через булавочное отверстие. Каждая часть предмета освещает соответствующую часть экрана, так что на экране создается перевернутое изображение предмета. Полученное с помощью булавочного отверстия изображение будет довольно тусклым, потому что для четкого изображения нужно еще меньшее отверстие (хотя, если отверстие слишком мало, изображение будет расплывчатым, поскольку нарушается волновая структура света).

Линза фактически представляет собой пару призм. Они направляют поток света от каждой точки объекта к соответствующей точке экрана, давая, таким образом, яркое изображение. В отличие от булавочного отверстия, линзы хорошо работают только тогда, когда соответствующим образом подобраны и правильно установлены. Хрусталик может быть неправильно настроен и не соответствовать глазу, в котором он находится. Хрусталик может фокусировать изображение спереди или сзади сетчатки, вместо того чтобы фокусировать его на самой сетчатке, что приводит к появлению близорукости или дальнозоркости. Поверхность хрусталика может быть недостаточно сферической и вызывать искажение или нарушение четкости изображения. Роговица может быть неправильной формы или иметь изъяны (возможно, вследствие повреждения металлической стружкой на производстве или песчинкой при вождении машины без предохранительных очков). Эти оптические дефекты могут быть скомпенсированы с помощью искусственных линз - очков. Очки исправляют дефекты аккомодации, изменяя силу хрусталика; они корригируют астигматизм, добавляя несферический компонент. Обычные очки не могут исправить дефекты поверхности роговицы, однако, новые роговичные линзы, установленные на самом глазу, образуют новую поверхность роговицы.

Очки удлиняют нашу активную жизнь. С их помощью мы можем читать и выполнять сложную работу в старости. До их изобретения работники умственного и физического труда становились беспомощными вследствие недостатков зрения, хотя они были еще сильны разумом.

Используемая литература: Р. Л. Грегори
Глаз и мозг. Психология зрительного восприятия: Л.Р. Грегори
под ред. Э. Пчелкина, С. Елинсон.-м. 1970 г.

Скачать реферат: У вас нет доступа к скачиванию файлов с нашего сервера.

свет цвет физиология восприятие

Для создания безопасных условий труда требуется не только достаточная освещенность рабочих поверхностей, но и рациональное направление света, отсутствие резких теней и бликов, вызывающих слепящее действие.

Правильная освещенность и окраска оборудования, опасных мест дает возможность следить за ними более внимательно (станок, окрашенный в однотонный цвет), а предупреждающая окраска опасных мест позволит уменьшить травматизм. Кроме того подбор правильного сочетания цветов и их интенсивности сведет до минимума время адаптации глаз при переводе взгляда с детали на рабочую поверхность. Правильно подобранная окраска может влиять на настроение рабочих, а, следовательно, и на производительность труда. Таким образом, недооценка влияния освещения, выбора цвета и света приводят к преждевременному утомлению организма, накоплению ошибок, снижению производительности труда, увеличению брака и, как следствие, к травматизму. Некоторое пренебрежение к вопросам освещенности вызвано тем, что глаз человека имеет очень широкий диапазон приспособления: от 20 лк (в полнолуние) до 100000 лк.

Естественное освещение - это видимый спектр излучения электромагнитных волн солнечной энергии длиной 380 - 780 нм (1 нм = 10 -9 м). Видимый свет (белый) состоит из спектра цветов: фиолетовый (390 - 450 нм), синий (450 - 510 нм), зеленый (510 - 575 нм), желтый (575 - 620 нм), красный (620 - 750 нм). Излучение с длиной волны более 780 нм называется инфракрасным, а с длиной волны менее 390 нм - ультрафиолетовым.

Цвет и свет взаимосвязаны между собой. Цвета, наблюдаемые человеком, делятся на хроматические и ахроматические. Ахроматические цвета (белый, серый, черный) имеют разные коэффициенты отражения и, поэтому, основной их характеристикой является яркость. Хроматические цвета (красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый) характеризуются, в основном, тоном, который определяется длиной волны и чистотой или насыщенностью (степень "разбавленности" основного цвета белым). Окраска оборудования, материалов и др. в чёрный цвет угнетает человека. При переноске стандартных ящиков белого и черного цвета все рабочие заявили, что чёрные ящики тяжелее. Чёрную нить на белом фоне видно в 2100 раз лучше, чем на черном, но при этом наблюдается резкий контраст (отношение яркостей). С увеличением яркости и освещения до известных пределов усиливается острота зрения и яркость, с которой глаз различает отдельные предметы, т.е. быстрота различения. Слишком большая яркость света отрицательно влияет на органы зрения, вызывая ослепление и резь в глазах. Приспособление глаз к изменению яркости называется тёмной и светлой адаптацией. При работе на станке тёмно-серого цвета (отражающего 5% света) и с блестящей деталью (отражающей 95% цвета) рабочий переводит взгляд со станка на деталь 1 раз в минуту, при этом на адаптацию глаза затрачивается примерно 5 секунд. За семичасовой рабочий день будет потеряно 35 минут. Если при тех же условиях работы изменить время адаптации до 1 секунды за счет правильного подбора контраста, потеря рабочего времени будет равна 7 минутам.

Неправильный подбор освещения влияет не только на потерю рабочего времени и утомление рабочих, но и увеличивает травматизм в период адаптации, когда рабочий не видит или плохо видит деталь, и выполняет рабочие операции автоматически. Подобные условия наблюдаются и при монтажных работах, работе крана и других видах работ в вечернее время при искусственном освещении. Поэтому отношение яркостей (сущность контраста) не должно быть большим.

В восприятии цветов человеком важную роль играет цветовой контраст, т.е. преувеличение действительной разницы между одновременными восприятиями. Одна французская торговая фирма заказала партию красной, фиолетовой и голубой ткани с черным узором. Когда заказ был выполнен, фирма отказалась его принять, т.к. на красной ткани вместо черного узора был зеленоватый; на голубой - оранжевый, на фиолетовой - желто-зеленоватый. Суд обратился к специалистам, и когда те закрыли ткань, то в прорезях на бумаге рисунок был черный.

В настоящее время установлено, что красный цвет возбуждает, но и быстро утомляет человека; зеленый полезен для человека; желтый вызывает тошноту и головокружение. Естественное освещение считается самым лучшим для здоровья человека.

Солнечный свет оказывает биологическое действие на организм, поэтому естественное освещение является гигиеничным. Замена естественного освещения искусственным допускается только тогда, когда по каким-либо причинам нельзя использовать (или невозможно использовать) естественное освещение рабочих мест.

Поэтому нормирование освещения производственных помещений и рабочих мест осуществляется на научной основе с учетом следующих основных требований:

  • 1. Достаточная и равномерная освещенность рабочих мест и обрабатываемых деталей;
  • 2. Отсутствие яркости, блеклости и слепящего действия в поле зрения рабочих;
  • 3. Отсутствие резких теней и контрастов;
  • 4. Оптимальная экономичность и безопасность осветительных систем.

Следовательно, для правильного светового режима необходимо учитывать весь комплекс гигиенических условий, т.е. количественную и качественную стороны освещения.

Для измерения освещенных рабочих мест и общей освещенности помещений используют люксметр типа Ю-116, Ю-117, универсальный люксметр - яркометр ТЭС 0693, фотометр типа 1105 фирмы "Брюль и Кэр". Принцип работы приборов основан на использовании фотоэлектрического эффекта - эмиссии электронов под действием света (рис 2.4.1).

При выполнении различных видов работ применяют естественное, искусственное и смешанное освещение, параметры которых регламентируются ГОСТ 12.1.013-78, СНиП ІІ-4-79 "Естественное и искусственное освещение", инструкцией по проектированию электрического освещения строительных площадок (СН 81-80). Все помещения с постоянным пребыванием людей должны иметь естественное освещение.

Там, где невозможно осуществить естественное освещение или если оно не регламентируется СНиП П-4-79, применяется искусственное или смешанное освещение.

Оптическая часть спектра, состоящая из ультрафиолетовых, видимых и инфракрасных излучений, имеет диапазон волн от 0,01 до 340 мкм. Видимое излучение, воспринимаемое глазом, называется световым и имеет длину волн от 0,38 до 0,77 мкм, а мощность такого излучения - световым потоком (F). Единицей светового потока принят люмен. Это величина, равная 1/621 светового ватта. Люмен [лм] определяется как световой поток, который испускается полным излучателем (абсолютно черным телом) при температуре затвердения платины с площадью 530,5?10 -10 м 2 (световой поток от эталонного точечного источника в 1 канделу, расположенного в вершине телесного угла в 1 стерадиан). Стерадиан - это единичный телесный угол щ, который является частью среды радиусом 1 м и площадью сферической поверхности, основание которой равно 1 м 2 .

где щ - единичный телесный угол, 1 стер;

S - площадь сферической поверхности, 1 м 2 ;

R - радиус сферической поверхности, 1 м.

Пространственная плотность светового потока в данном направлении называется силой света (I). За единицу силы света принята кандела [кд].

где Й - сила света, кд;

F - световой поток, лм.

Величина светового потока, который приходится на единицу освещаемой поверхности, называется освещенностью (Е). Измеряется освещенность в люксах. Люкс - освещенность поверхности площадью 1м 2 равномерно распределенным световым потоком в 1 лм.

Видимость предметов зависит от части света, отраженного предметом, и характеризуется яркостью (В). Измеряется яркость в [кд/м 2 ].

где б - угол между нормалью к элементу поверхности S и направлением, для которого определяется яркость.

Яркость - светотехническая величина, на которую непосредственно реагирует глаз. Гигиенически приемлемым являются яркости до 5000 кд. Яркость в 30000 кд и выше является ослепляющей. К качественным показателям освещенности относятся фон и контрастность, видимость, показатель ослепленности и т.д.

Фон - это поверхность, которая примыкает к объекту (различие). Фон считается светлым при коэффициенте отражения с > 0,4; средним при с = 0,2-0,4; и темным при с < 0,2.

Контрастность характеризуется отношением яркостей рассматриваемого предмета и фона:

Контрастность освещения считается большой при > 0,5; средней при = 0,2-0,5; и малой при < 0,2.

Равномерность освещения характеризуется отношением минимальной освещенности к её максимальному значению в пределах всего помещения.

Естественное освещение

Естественное освещение является наиболее приемлемым человеку, поэтому помещения с постоянным пребыванием людей должны иметь в основном естественное освещение. Естественное освещение осуществляется через оконные, дверные проемы, через фонари, прозрачные кровли. Поэтому оно подразделяется на (рис.2.4.2):

  • а) верхнее освещение - через световые фонари, прозрачные кровли;
  • б) боковое освещение - через окна;
  • в) комбинированное освещение - через окна и фонари, и т.д.

Критерием естественной освещенности является коэффициент естественной освещенности (КЕО или Е Н), который представляет отношение естественной освещенности светом неба в некоторой точке заданной плоскости внутри помещения Е вн к одновременному значению наружной горизонтальной освещенности, создаваемой светом полностью открытого небосвода Е нар, и выражается в процентах:

Нормирование КЕО проводится согласно с требованиями СНиП ЙЙ-4-79 "Естественное и искусственное освещение. Нормы проектирования".

Согласно СНиП ЙЙ-4-79 при одностороннем боковом освещении критерием оценки является минимальное значение КЕО в точке, расположенной в 1 м от стены, наиболее удаленной от световых проемов, на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности или пола. Под характерным разрезом помещения понимается поперечный разрез помещения, плоскость которого перпендикулярна к плоскости остекления световых проемов. В характерный разрез помещения должны попадать участки с наибольшим количеством рабочих мест. За условную рабочую поверхность принимается горизонтальная поверхность, расположенная на высоте 0,8 м от пола. При двустороннем боковом освещении критерием оценки является минимальное значение KЕO в середине помещения, в точке на пересечении вертикальной плоскости характерного разреза помещения и условной рабочей поверхности (пола).

При верхнем, боковом и комбинированном освещении нормируется среднее значение КЕО (табл. 2.4.1.).

Все параметры освещения определяются разрядом зрительной работы. Разряд зрительной работы при расстоянии от объекта различия до глаз работающего более 0,5 м определяется отношением минимального размера объекта различия (d) к расстоянию от этого объекта до глаз работающего (l). Под объектом различия понимается рассматриваемый предмет, отдельная его часть или дефект, которые требуется различать в процессе работ. Всего установлено восемь разрядов зрительной работы (табл. 2.4.1).

Нормированное значение KЕO (Е н) принимается в зависимости от разряда зрительной работы, особенностей светового климата и солнечного климата.

Для зданий располагаемых в Й, II, ЙV и V поясах светового климата стран СНГ, в зависимости от вида освещения, боковое или верхнее нормированное значение КЕО (Е н б, Е н в) определяется по формуле:

где m-коэффициент светового климата; с-коэффициент солнечности климата.

Значение Е н III находится по таблице 2.4.1; коэффициент светового климата (m) - по таблице 2.4.2; коэффициент солнечности климата (С) - по таблице 2.4.3. Неравномерность естественного освещения производственных и общественных зданий с верхним или с верхним и боковым освещением основных помещений для детей и подростков при боковом освещении не должна превышать 3:l.

Неравномерность естественного освещения не нормируется для помещений с боковым освещением при выполнении работ VЙЙ, VIII разрядов при верхнем и комбинированном освещении, для вспомогательных и общественных зданий ЙЙЙ и IV групп (п.1.2 СНиП ЙЙ-4-79). При проектировании зданий в ЙЙЙ и V климатических районах, где выполняются работы I - IV разрядов, необходимо предусматривать солнцезащитные устройства. При естественной освещенности помещений большое значение имеет уход за окнами и фонарями. Грязные стекла задерживают до 50% всего света. Поэтому должна производиться регулярная чистка стекол и побелка помещений. С незначительным выделением пыли чистки стекол производится через шесть месяцев, побелка - один раз в три года; в пыльных - четыре раза в год чистка и один раз в год побелка.

При проектировании зданий одной из важных задач является правильный расчет площади световых проемов при естественном освещении.

Если площадь световых проемов будет меньше требуемой, то это приведет к снижению освещенности и, как следствие, к снижению производительности труда, повышенной утомляемости работающих, заболеваниям и появлению травматизма.

Таблица 2.4.1. Нормирование коэффициента естественного освещения

Характеристика

зрительной работы

Наименьший размер объекта различия, мм

зрительной работы

КЕО (Е н IV), %

при верхнем и комбинированном освещении

при боковом освещении

в зоне со стойким снеговым покровом

на остальной территории

Наивысшая точность

Меньше 0,15

Очень высокая точность

От 0,15 до 0,8

Высокая точность

Выше 0,3 до 0,5

Средняя точность

Выше 0,5 до 1,0

Малая точность

Выше 1,0 до 5,0

Грубая (очень малая точность)

Больше 0,5

Работа с материалами, которые светятся, и изделиями в горячих цехах

Больше 0,5

Общие наблюдения за ходом производственного процесса:

постоянное

периодическое при постоянном нахождении людей

периодическое при периодическом нахождении людей

Таблица 2.4.2. Значение коэффициента светового климата, m

Таблица 2.4.3. Значение коэффициента солнечности климата, с

Пояс светового климата

При световых проемах, сориентированных по сторонам горизонта (азимут), град

При зенитных фонарях

во внешних стенах строений

в прямоугольных и трапециидальных фонарях

в фонарях типа "шод"

  • а) севернее 50°с.ш.
  • б) 50°с.ш. и южнее
  • а) севернее 40°с.ш.
  • б) 40°с.ш. и южнее

Рис. 2.4.3

Для исправления допущенной ошибки необходимо дополнительно вводить искусственное освещение, что вызовет постоянные дополнительные расходы. Если площадь световых проемов будет больше, то потребуется постоянные дополнительные расходы на отопление зданий. Поэтому СНиП II-4-79 запрещает для отапливаемых зданий предусматривать площадь световых проемов больше, чем требуется по настоящим нормам (рис. 2.4.5). Установленные размеры световых проемов допускается изменять на +5, -10%.

Площадь световых проемов в свету рассчитывают

При боковом освещении, м 2:

  • (2.4.8)
  • - при верхнем освещении, м 2:

где - нормированное значение КЕО;

S 0 и S ф - площадь окон и фонарей;

S п - площадь пола;

з 0 и з ф - световые характеристики окна и фонаря (ориентировочно приняты для окон 8,0 - 15,0, для фонарей 3,0 - 5,0).

Световая характеристика окон (з о) оценивается по таблице 26 с учетом характеристики помещения, а световая характеристика фонаря или светового проема (з ф) - по таблицам 31 и 32 приложения 5 СНиП ЙЙ-4-79 с учетом характеристик помещения и фонарей.

Коэффициенты, учитывающие затенение окон противостоящими зданиями (К зд), тип фонаря (К ф) определяются по таблице 3 СНиП II-4-79; К з - коэффициент запаса принимается по таблице 5.

При боковом освещении до проведения работ необходимо оценить отношение ширины (глубины) помещений (В) к расстоянию от уровня условной рабочей поверхности до верхнего края окна (h 1).

Общий коэффициент (рис.2.4.3.) светопропускания (ф 0), зависит от коэффициентов светопропускания материала (ф 1), коэффициентов, учитывающих потери света в переплетах светопроема (ф 2), потери света в несущих конструкциях (ф 3), потери света в солнцезащитных устройствах (ф 4), потери света в защитной сетке, устанавливаемой под фонарями (ф 5 =0,9). Значения коэффициентов приведены в СНиП II-4-79 приложения 5 таблицы 28, 29.

Коэффициенты, которые учитывают повышение КЕО от отражения света (r 1 и r 2) находят по таблицам 30 и 33 приложения 5 СНиП ЙЙ-4-79 с учётом коэффициента отражения (с ср) и характеристик помещения.

Чтобы правильно рассчитать площадь световых проемов (в свету) при боковом (S 0) или верхнем (S ф) освещении, необходимо знать не только параметры проектируемого помещения, но и виды работ, для которых проектируется здание, в каком световом климате Украины или СНГ строится объект, взаимное расположение объектов.