Фасеточные глаза на голове имеют. Сложные или фасеточные глаза

Показать все


У высших насекомых органы зрения не одинаковы по своему строению. На лбу или у них находятся три простых (в середине - , по бокам от него - латеральные), а по бокам располагаются два сложных фасеточных глаза. Они встречаются у взрослых насекомых, а также у с , и передают в большую часть получаемой визуальной информации.

Общее строение глаз

Глаза есть у большинства насекомых, и лишь относительно небольшое количество таксонов ими не обладают. К примеру, их нет у некоторых примитивных видов, а также у странствующих муравьев Ection. В большинстве случаев глаза представлены в виде двух отдельных образований, однако, например, у стрекоз они настолько велики, что сходятся в единую структуру на .

По форме сложные органы зрения чаще близки к округлым, однако в ряде случаев они каплевидные (как у богомола) или почковидные, так как имеют вырезку, на которой «сидит» антенна (как у ивового толстяка Lamia textоr). В некоторых случаях вырезка настолько резкая, что отделяет верхнюю и нижнюю часть глаза друг от друга, из-за чего кажется, что глаз у насекомого не два, а четыре (пример - жук Tetrops praeusta). Иногда особенности формы и размера глаз определяются принадлежностью к тому или иному полу. Так, самцы обычно имеют более развитые глаза, нежели самки, что особенно видно на примере трутней и рабочих пчел. У слепней они соприкасаются в середине у самцов и не соприкасаются у самок.

В нижней части, прилежащей к голове, каждый глаз ограничен базальной, или ситовидной мембраной. В ней, согласно количеству омматидиев, имеется множество отверстий, через которые проходят зрительные нервные волокна. Через них же в глаз входят , пронизывающие его и проходящие между . На месте глаза образует довольно глубокое впячивание, образуя глазную капсулу, или глазной ; он является опорной структурой глаза.

Омматидий как структурная единица сложного глаза

Поперечный размер (диаметр) структурных единиц глаза также отличается, однако он, в любом случае, измеряется в микронах. майского жука по диаметру равны 20 микрон, американского таракана - 32 микрона.

Зрительные оси омматидиев должны быть примерно перпендикулярны поверхности , поэтому, чем большее пространство они занимают, тем более выпуклы глаза насекомых. Однако сильная выпуклость глаз говорит не столько о хорошем зрении, сколько о большом поле обзора, по крайней мере, у дневных видов.

Подробное строение омматидиев довольно сложно и будет рассмотрено на примере типичного аппозиционного глаза (объяснение данного термина в следующем разделе). В структуре каждой единицы фасеточных глаз находится три функциональных комплекса структур, или три аппарата:

  • диоптрический (преломляющий)

Состоит из линз, преломляет и направляет свет.

  • рецепторный (воспринимающий)

Воспринимает и передает зрительную информацию.

  • аппарат пигментной изоляции

Строение омматидия

Строение омматидия

1 - роговица, 2 - корнеагенные клетки,

3 - кристаллический конус, 4 - клетки Земпера,

5 - ретинальные клетки, 6 - зрительная палочка,

7 - побочные пигментные клетки,

8 - ретинальные пигментные клетки,

9 - базальная мембрана

Зрительные аппараты омматидия

Диоптрический аппарат

состоит следующих частей (снаружи внутрь): (фото)

Рецепторный аппарат

включает еще несколько компонентов :
  • Ретинальные клетки - вытянутые структуры, которые располагаются ниже кристаллического конуса в виде пучка (5 на (фото) ).
  • Зрительная палочка (рабдом) - продолговатое образование, состоящее из продуктов секреции ретинальных клеток и находящееся в центре их пучка. В поперечном срезе рабдом и ретинальные клетки формируют картину «цветка», где рабдом занимает осевое положение, являясь «сердцевинкой», а ретинальные клетки расположены вокруг него, подобно лепесткам (6 на (фото) ).
  • Зрительные нервы - нервы, передающие информацию в центральную нервную систему.

Аппарат пигментной

изоляции имеет в своем составе 3 образования:
  • Корнеагенные (главные пигментные) клетки : те же самые, которые вырабатывают хрусталика. Они заполняются пигментом и изолируют хрусталик от роговиц соседних омматидиев.
  • Побочные пигментные клетки - изолируют каждый от других на уровне хрустального конуса (7 на (фото) ).
  • Ретинальные пигментные клетки - выполняют ту же функцию, но ниже, на уровне расположения ретинальных клеток и зрительной палочки (8 на (фото) ).

Нейросуперпозиционный глаз

Такие глаза отличаются тем, что в них происходит суммирование нервных сигналов от некоторой части зрительных клеток, свет в которые приходит из одного места. Такой тип глаза имеется у мух.

Зрение насекомых

У соседних омматидиев зрительные оси сильно сближены между собой, что дает насекомым способность лучше различать точки, находящиеся близко друг к другу. В результате, острота их зрения примерно в 3 раза выше, чем у человека. Вместе с тем, при удалении объекта от глаза зрение ухудшается; таким образом, насекомые, по человеческим меркам, близоруки.

Еще одно преимущество фасеточных глаз состоит в том, что множество омматидиев позволяет лучше следить за мелькающими и быстро перемещающимися объектами. Для нас слитное изображение на экране формируется при движении пленки 16 кадров в секунду, а для насекомых - при 250-300. Это создает им преимущество при быстром .

Насекомые могут воспринимать поляризацию света. Мало того, что они видят все объекты объемными, они различают тонкие оттенки и переливы цветов, недоступные человеческому глазу. У большинства насекомых зрение цветное, черно-белое имеется лишь у примитивных форм, обитающих в пещерах, у большого мучного хрущака и термитов. У летающих растительноядных видов них есть светоприемник, «настроенный» на восприятие в ультрафиолетовом спектре, благодаря чему они лучше различают чашечки цветков с воздуха.

Типы фасеточных глаз

Схема строения апозиционного фасеточного глаза : 1 - роговичные фасетки; 2 - светопреломляющий аппарат; 3 - пигментные клетки; 4 - зрительные клетки; 5 - светочувствительный элемент омматидия; 6 - аксоны зрительных клеток, идущие в оптические ганглии; 7 - покровы головы; 8 - глазная капсула.

В зависимости от анатомических особенностей омматидиев и их оптических свойств различают 3 типа фасеточных глаз: апозиционные (фотопические), оптикосуперпозиционные и нейросуперпозиционные (называемые в совокупности скотопическими). У некоторых насекомых (богомолы , подёнки) одна часть глаза может быть построена по аппозиционному типу, а другая - по суперпозиционному.

В фасеточных глазах всех типов собственно светочувствительным элементом служат рабдомеры зрительных клеток, содержащие фотопигмент (обычно подобный родопсину). Поглощение фотопигментом квантов света - первое звено в цепи процессов, в результате которых зрительная клетка генерирует нервный сигнал.

Апозиционные (фотопические) фасеточные глаза

В апозиционных фасеточных глазах, свойственных обычно дневным насекомым, смежные омматидии постоянно изолированы друг от друга непрозрачным пигментом и рецепторы воспринимают только свет, направление которого совпадает с осью данного омматидия.

Оптикосуперпозиционные фасеточные глаза

В оптикосуперпозиционных фасеточных глазах, характерных для ночных и сумеречных насекомых и многих ракообразных, изоляция омматидиев переменная (вследствие способности пигмента перемещаться), и при недостатке света происходит наложение (суперпозиция) падающих под косым углом лучей , прошедших не сквозь одну, а сквозь несколько фасеток. Таким образом, при слабом освещении увеличивается чувствительность глаза.

Нейросуперпозиционные фасеточные глаза

Для нейросуперпозиционных фасеточных глаз характерна суммация сигналов от зрительных клеток, находящихся в разных омматидиях, но получающих свет из одной и той же точки пространства.

Разрешающая способность и цветовое восприятие

Схема возникновения сетчатого изображения в аппозиционных (а), оптикосуперпозиционных (б) и нейросуперпозиционных (в) фасеточных глазах: 1 - отдельные омматидии с единым или разобщённым светочувствительным элементом, сложенным рабдомерами; 2 - аксоны зрительных клеток. Заштрихованы те светочувствительные элементы, на которые попадают параллельно идущие лучи света (показаны стрелками).

Источники

  • Фасеточные глаза - статья из Большой советской энциклопедии

Wikimedia Foundation . 2010 .

Смотреть что такое "Фасеточные глаза" в других словарях:

    Сложные глаза (oculi), основной парный орган зрения ракообразных, насекомых и нек рых других беспозвоночных, образованный омматидиями, роговичная линза к рых имеет вид выпуклого 6 гранника фасетки (франц. facette грань, отсюда назв.). Ф. г.… … Биологический энциклопедический словарь

    Сложные глаза у некоторых насекомых. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. ФАСЕТОЧНЫЕ ГЛАЗА сложные глаза, встречаются у большинства насекомых и состоят из значит. числа простых глазков: у муравьев от 50… … Словарь иностранных слов русского языка

    - (от франц. facette грань) (сложные глаза) парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образован многочисленными отдельными глазками омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле… …

    - (от франц. facette грань), сложные глаза, парный орган зрения насекомых, ракообразных и некоторых других беспозвоночных; образован многочисленными отдельными глазами омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле … Энциклопедический словарь

    Сложные глаза, основной парный орган зрения насекомых, ракообразных и некоторых др. беспозвоночных; образованы особыми структурными единицами – омматидиями (См. Омматидий), роговичная линза которых имеет вид выпуклого шестигранника –… … Большая советская энциклопедия

    - (от франц. facette грань) (сложные глаза), парный орган зрения насекомых, ракообразных и нек рых др. беспозвоночных; образован многочисл. отдельными глазами омматидиями. Хорошо воспринимают движущиеся объекты, обеспечивают широкое поле зрения.… … Естествознание. Энциклопедический словарь

    Или сложные глаза членистоногих (см. Глаз) получили это название потому, что хитин покровов образует над каждым глазком утолщение, или фасетку (Cornea Linse). Вся совокупность многогранных фасеток представляет поле, напоминающее торцовую мостовую … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    То же, что фасеточные глаза. * * * СЛОЖНЫЕ ГЛАЗА СЛОЖНЫЕ ГЛАЗА, то же, что фасеточные глаза (см. ФАСЕТОЧНЫЕ ГЛАЗА) … Энциклопедический словарь

    То же, что фасеточные глаза … Большой Энциклопедический словарь

    То же, что фасеточные глаза. .(

Все люди знают, что поймать или прихлопнуть муху очень сложно: она очень хорошо видит и моментально реагирует на любые движения, взлетая вверх. Разгадка кроется в уникальном зрении этого насекомого. Ответ на вопрос о том, сколько глаз у мухи, поможет понять причину ее неуловимости.

Устройство зрительных органов

Домашняя или обыкновенная муха имеет черно-серый окрас туловища длиной до 1 см и немного желтоватое брюшко, 2 пары серых крыльев и голову с большими глазами. Она относится к самым древним жителям планеты, о чем свидетельствуют данные археологов, обнаруживших экземпляры, датируемые 145 млн. лет.

При рассмотрении головы мухи под микроскопом можно увидеть, что у нее очень оригинальные объемные глаза, расположенные с двух сторон. Как видно на фото глаз мухи, они похожи визуально на мозаику, составленную из 6-гранных структурных единиц, которые называют фасетками или омматидиями, похожими на строение медовых сот. В переводе с французского слово «fasette» означает грани. Благодаря этому глаза называют фасеточными.

Как понять, что видит муха по сравнению с человеком, у которого зрение является бинокулярным, т. е. составляется из двух картинок, которые видят 2 глаза? У насекомых зрительный аппарат устроен более сложно: каждый глаз состоит из 4 тыс. фасеток, показывающих небольшую часть видимого изображения. Поэтому формирование общей картины внешнего мира у них происходит по принципу «сбора пазлов», что позволяет говорить об уникальности строения мозга мух, способного обрабатывать более 100 кадров изображений в секунду.

На заметку!

Фасеточное зрение есть не только у мух, но и у других насекомых: у пчел имеется 5 тыс. фасеток, у бабочек – 17 тыс., у рекордсменов стрекоз – до 30 тыс. омматидий.

Как видит муха


Такое устройство зрительных органов не дает возможности концентрироваться мухе на определенном предмете или объекте, а показывает общую картину всего окружающего пространства, что позволяет быстро заметить опасность. Угол обзора каждого глаза составляет 180°, что вместе составляет 360°, т. е. тип зрения является панорамным.

Благодаря такой структуре глаз, муха прекрасно обозревает все вокруг, в т. ч. видит человека, который пытается подкрасться сзади. Контроль за всем окружающим пространством обеспечивает ей 100% оборону от всех неприятностей, в т. ч. и от людей, собирающихся .

Кроме 2-х основных, у мух есть еще 3 обычных глаза, расположенных на лбу в промежутках между фасеточными. Эти органы позволяют им рассматривать близлежащие объекты более четко для распознавания и мгновенной реакции.

Интересно!

Суммируя все данные, можно констатировать, что зрение мухи представлено 5-ю глазами: 2 фасеточных – для контроля за окружающим пространством и 3 простых – для наведения резкости и распознавания объектов.

Особенности зрительных способностей мух

Зрение у мухи обыкновенной имеет еще множество интересных особенностей:

  • основные цвета и их оттенки мухи различают прекрасно, к тому же они способны отличать и ультрафиолетовые лучи;
  • они совершенно ничего не видят в темноте и потому ночью спят;
  • однако некоторые цвета из всей палитры они улавливают немного иначе, потому условно их считают дальтониками;
  • фасеточное устройство глаз позволяет фиксировать одновременно все вверху, внизу, слева, справа и впереди и дает возможность быстро отреагировать на приближающуюся опасность;
  • глаза мухи различают только мелкие предметы, к примеру, приближение руки, но крупную фигуру человека или мебель в помещении не воспринимают;
  • у самцов фасеточные глаза расположены ближе друг к другу по сравнению с самками, имеющими более широкий лоб;

Интересно!

Об остроте зрения свидетельствует и факт, сколько кадров в секунду видит муха. Для сравнения точные цифры: человек воспринимает только 16, а муха – 250-300 кадров в секунду, что помогает ей прекрасно ориентироваться при быстрой скорости в полете.

Мерцательные характеристики

Существует показатель зрительных способностей, который связан с частотой мерцания изображения, т. е. самой ее низкой границей, при которой свет фиксируется как постоянный источник освещения. Называется он CFF - critical flicker-fusion frequency. Его значение показывает то, насколько быстро глаза у животного способны обновлять изображение и обрабатывать зрительную информацию.

Человек способен улавливать частоту мерцания 60 Гц, т. е. обновление изображения 60 раз в сек., которой придерживаются при показе визуальной информации на телевизионном экране. Для млекопитающих (собак, кошек) это критическое значение равно 80 Гц, из-за чего им обычно не нравится просмотр телепередач.

Чем выше значение частоты мерцания, тем больше биологических преимуществ имеет животное. Поэтому для насекомых, у которых данное значение достигает 250 Гц, это проявляется в возможности более быстрой реакции на опасность. Ведь для человека, приближающегося к «добыче» с газетой в руках с намерением ее убить, движение кажется быстрым, но уникальное строение глаза позволяет ей улавливать даже мгновенные перемещения как бы в замедленном темпе.

По данным биолога К. Гили, такая высокая критическая частота мерцания у мух обусловлена их малыми размерами и быстрым обменом веществ.

Интересно!

Различие показателя CFF для различных видов позвоночных животных выглядит так: самый маленький 14 Гц – у угрей и черепах, 45 – у рептилий, по 60 – у людей и акул, у птиц и собак – 80, у сусликов – 120.

Приведенный анализ зрительных способностей позволяет понять, что мир глазами мухи выглядит как сложная система большого числа картинок по аналогии с небольшими видеокамерами, каждая из них передает насекомому информацию о небольшой части окружающего пространства. Собранное воедино изображение позволяет одним взглядом держать визуальную «круговую оборону» и мгновенно реагировать на приближение врагов. Исследования ученых таких зрительных способностей насекомых позволили заниматься разработками летающих роботов, у которых компьютерные системы контролируют положение в полете, имитируя зрение мух.

Вопрос "Сколько глаз у обыкновенной мухи?" не так прост, как кажется. Два больших глаза, расположенных по бокам головы, можно увидеть невооруженным взглядом. Но на деле устройство органов зрения мухи гораздо сложнее.

Если посмотреть на увеличенное изображение глаз мухи, видно, что они похожи на соты и состоят из множества отдельных сегментов. Каждая из частей имеет форму шестиугольника с правильными гранями. Отсюда и произошло название такого строения глаза – фасеточное («facette» в переводе с французского означает «грань»). Похвастаться сложными фасеточными глазами могут многие и некоторые членистоногие, причем муха далеко не рекордсмен по количеству фасеток: у нее всего 4 000 фасеток, а у стрекоз – около 30 000.

Ячейки, которые мы видим, называются омматидиями. Омматидии имеют конусообразную форму, узкий конец которой уходит вглубь глаза. Конус состоит из клетки, которая воспринимает свет, и хрусталика, защищенного прозрачной роговицей. Все омматидии тесно прижаты друг к другу и соединены роговицей. Каждый из них видит «свой» фрагмент картинки, а мозг складывает эти крошечные изображения в одно целое.

Расположение больших фасеточных глаз у самок и самцов мухи отличается. У самцов глаза близко посажены, а у самок – больше разнесены по сторонам, так как у них имеется лоб. Если посмотреть на муху под микроскопом, то посередине головы выше фасеточных органов зрения можно разглядеть три небольших точки, расположенных треугольником. На самом деле эти точки являются простыми глазами.

Итого у мухи одна пара сложных глаз и три простых - всего пять. Зачем природа пошла по такому сложному пути? Дело в том, что фасеточное зрение сформировалось, чтобы в первую очередь охватывать взглядом как можно больше пространства и улавливать движение. Такие глаза выполняют основные функции. Простыми глазами муху «обеспечили» для измерения уровня освещённости. Фасеточные глаза являются основным органом зрения, а простые – второстепенным. Если бы у мухи не было простых глаз, она была бы более медленной и могла летать только при ярком свете, а без фасеточных глаз она ослепла бы.

Каким муха видит окружающий мир?

Большие глаза выпуклой формы позволяют мухе видеть все вокруг себя, то есть угол зрения равен 360 градусам. Это в два раза шире, чем у человека. Неподвижные глаза насекомого одновременно смотрят по всем четырём сторонам. Зато острота зрения мухи ниже человеческой почти в 100 раз!

Так как каждый омматидий является самостоятельной ячейкой, картинка получается сетчатой, состоящей из тысяч отдельных маленьких изображений, дополняющих друг друга. Поэтому мир для мухи – это собранный пазл, состоящий из нескольких тысяч кусочков, причем довольно расплывчатый. Более или менее четко насекомое видит всего на расстоянии 40 - 70 сантиметров.

Муха способна различать цвета и даже невидимый человеческому глазу поляризованный свет и ультрафиолет. Глаз мухи чувствует малейшие изменения яркости света. Она способна видеть солнце, скрытое густыми облаками. Но в темноте мухи видят плохо и ведут преимущественно дневной образ жизни.

Еще одна интересная способность мухи – быстрая реакция на движение. Муха воспринимает движущийся объект в 10 раз быстрее человека. Она легко «вычисляет» скорость объекта. Эта способность жизненно необходима для определения расстояния до источника опасности и достигается за счет «передачи» изображения от одной ячейки - омматидия к другой. Авиационные инженеры взяли на вооружение такую особенность зрения мухи и разработали прибор для вычисления скорости летящего самолета, повторив строение ее глаза.

Благодаря такому быстрому восприятию, мухи живут в замедленной реальности, по сравнению с нами. Движение, длящееся секунду, с точки зрения человека, муха воспринимает как десятисекундное действие. Наверняка люди кажутся им очень медлительными существами. Мозг насекомого работает с быстротой суперкомпьютера, получая изображение, анализируя его и передавая соответствующие команды телу за тысячные доли секунды. Поэтому прихлопнуть муху получается далеко не всегда.

Итак, правильным ответом на вопрос "Сколько глаз у обыкновенной мухи?" будет число «пять». Основные являются у мухи парным органом, как и у многих живых существ. Почему природа создала именно три простых глаза - остается загадкой.

Швейцарские учёные удалось воспроизвести глаз мухи, так называемый искусственный фасеточный глаз.
Фасеточные глаза, состоящие из множества узких светочувствительных конусов, называемых омматидиями, характерны для насекомых и ракообразных.

Такие глаза имеют ряд преимуществ и недостатков по сравнению с человечиским. Глаз мухи имеет меньшее разрешение, чем глаз позвоночных, то есть картинка улавливаемая данным глазом будет не четкая. А из преимуществ - они менее инерционны (некоторые насекомые способны воспринимать мелькания с частотой до 300 Гц), не требуют фокусировки и могут различать не только цвет, но и направление поляризации света. Если в двух словах – то картинка быстрая, разнообразная, насыщеная но не четкая. Команда учёных из Федеральной политехнической школы Лозанны (EPFL) создала прототип искусственного фасеточного глаза, который использует преимущества такой конструкции.

Камера как глаз у мухи (фасеточный глаз)

Искусственный глаз, который учёные назвали CurvACE (CURVed Artificial Compound Eyes), состоит из 630 «омматидиев», каждый из которых представляет собой светочувствительный элемент и микролинзу, фокусирующую на него узкий пучок света. Глаз имеет угол обзора 60 градусов в вертикальной и 180 - в горизонтальной плоскости. По вертикали углы зрения разных омматидиев заданы формой микролинз, а по горизонтали - изгибом подложки, на которой расположен глаз. Такая форма продиктована технологией изготовления - светочувствительные элементы формируются на твёрдом кристалле, который затем разрезается на узкие полоски.


Камера как глаз у мухи (фасеточный глаз)

Глаз имеет объём всего 2,2 кубических сантиметра и весит 1,75 грамма. При промышленном производстве современный уровень техники позволит уменьшить его размеры как минимум вдвое. Основное назначение глаза - системы визуальной навигации для роботов. Глаз обладает высокой чувствительностью и динамическим диапазоном - каждый омматидий может индивидуально приспосабливаться к уровню освещённости. Такой глаз нельзя ослепить солнечным бликом. В сочетании с высоким быстродействием (прототип может выдавать до 1500 кадров в секунду), малыми размерами, отсутствием искажений по краям поля зрения и возможностью относительно просто добиться кругового или даже сферического обзора это делает его идеальным инструментом для определения положения робота в пространстве, детектирования препятствий и предотвращения столкновений. Наверное первые образцы таких камер мы увидим на автомобилях с автоуправлением и различных роботах.

По своим характеристикам CurvACE приблизительно соответствует глазу плодовой мушки дрозофилы. Так же как и глаз насекомого, содержащий внутри нервный узел, осуществляющий первичную обработку изображения, СurvACE включает в себя микроконтроллер, который обрабатывает сигнал с сенсоров с помощью алгоритмов оптического потока, а так же акселерометр и гироскоп.

Собственно электронная начинка и составляет большую часть массы и объема глаза - сам массив CMOS-сенсоров с микролинзами имеет толщину 1 мм и весит 0,36 грамма. Возможность придавать фасеточной камере любую форму и отсутствие больших линз открывают множество возможностей: такие «глаза» можно встраивать в стены помещений, в одежду или мебель для использования в системах умного дома или видеонаблюдения. Комбинируя омматидии разного типа в одном сенсоре, можно создать камеру, которая будет видеть одновременно в разных диапазонах. Некий праобраз всевидещего глаза, новая беда для параноиков и чудо находка для спецслужб.