Способ направленной доставки днк в опухолевые и стволовые клетки. Раздел "генная инженерия" Проникновение полиплексов в клетки-мишени

Одним из наиболее перспективных вариантов систем доставки генов в клетки являются полиплексы – комплексы переносимой ДНК и катионных полимеров различной природы. В данной статье описываются свойства полиплексов на основе нескольких типов катионных полимеров, их транспорт в ядра клеток-мишеней, а также один из подходов для лечения злокачественных новообразований с помощью этих конструкций.

Введение

Генная терапия – лечение наследственных, онкологических и других заболеваний путём внесения в клетки пациента необходимого генетического материала с целью направленного изменения генных дефектов или придания клеткам новых функций [Горбунова и др., 1997]. Для доставки ДНК или РНК в клетки-мишени создаются носители (векторы) для обеспечения высокого уровня трансфекции, т.е. переноса экзогенной (чужеродной) ДНК или РНК в определённые типы клеток. Помимо этого, векторы должны обеспечивать защиту генетической информации, т.к. в условиях in vivo чужеродная ДНК нестабильна из-за быстрой деградации сывороточными нуклеазами , ферментами, расщепляющими нуклеиновые кислоты.

Типы транспортёров генетического материала

В природе существуют специализированные структуры для доставки генетической информации в клетки – вирусы. Поэтому их начали использовать в качестве транспортёров генов. В то же время использование вирусных векторов имеет целый ряд ограничений. Во-первых, это малая ёмкость переносимого генетического материала и свойственная вирусам собственная клеточная специфичность. Во-вторых, это возможность вирусов возвращения к дикому типу в результате рекомбинации при прохождении однотипной инфекции. В-третьих, белки вирусных частиц обладают высокой иммуногенностью, в результате чего повторное их введение вызывает иммунный ответ. Наконец, массовое производство вирусных векторов всё ещё достаточно проблематично и требует больших затрат. В настоящее время активно разрабатываются различные варианты невирусных носителей на основе катионных липидов и катионных полимеров. Эти катионные молекулы способны спонтанно формировать самособирающиеся нанокомплексы с отрицательно заряженной молекулой ДНК за счёт электростатических взаимодействий. Самособирающиеся комплексы, состоящие из катионных липидов и ДНК, называют липоплексами, состоящие из катионных полимеров и ДНК – полиплексами.

Катионные полимеры, используемые для создания полиплексов

Для целей генотерапии и биотехнологии предложено большое количество катионных полимеров или поликатионов. Поликатионы конденсируют ДНК в компактные нанокомплексы, обеспечивая стабильность ДНК и защиту от действия нуклеаз. В качестве ДНК-связывающих полимеров могут служить катионные белки, синтетические гомополимеры аминокислот (полилизины, полиаргинины), полисахарид хитозан, полиэтиленимин, дендримеры различного состава и другие модифицированные полимеры . Степень компактизации ДНК определяется суммарным зарядом комплекса, который, в свою очередь, зависит от отношения количества положительных групп полимеров к числу отрицательных фосфатных групп ДНК. Обычно в составе полиплексов поликатион находится в избытке, в результате чего формируются наноразмерные комплексы (от нескольких десятков до нескольких сотен нм), которые растворимы в воде и положительно заряжены (рис. 1, 2). В противном случае комплексы будут нестабильны.

Рис. 1. Схема образования полиплексов из катионных полимеров и кольцевой молекулой ДНК (плазмидой) . Рис. 2. Изображение полиплексов на подложке, полученное с помощью трансмиссионной электронной микроскопии (деление шкалы 200 нм), .

Одним из первых применяемых для доставки генов поликатионов был поли-L-лизин (ПЛ, рис. 3), который благодаря своей пептидной природе является биодеградабельным, что делает его крайне удобным для использования in vivo. Часто для устранения нежелательных эффектов, связанных с высокой плотностью поверхностного заряда, применяют сополимер ПЛ с полиэтиленгликолем (ПЭГ), . В результате такой модификации уменьшается поверхностный заряд комплекса, что предотвращает неспецифическую адсорбцию отрицательно заряженных сывороточных белков крови на полиплексах, а также уменьшает цитотоксичность комплексов.

Полиэтиленимин (ПЭИ, рис. 3) считается одним из наиболее перспективных вариантов поликатионов для создания полиплексов на его основе. ПЭИ синтезируют в двух формах: линейной и разветвлённой. ПЭИ обладает большим количеством амино- и иминогрупп, способных к протонированию, в результате чего он проявляет буферные свойства при физиологических условиях. Полиплексы на основе ПЭИ отличаются более эффективной трансфекцией и защитой от действия нуклеаз по сравнению с другими поликатионами, что связано с высокой плотностью зарядов на ПЭИ и более компактным сворачиванием ДНК. Сильный положительный заряд приводит к токсичности ПЭИ, что вместе с отсутствием биологического разложения ПЭИ являются лимитирующими факторами для использования ПЭИ in vivo. С целью снижения цитотоксичности ПЭИ модификацируют с помощью полиэтиленгликоля, обладающего низкой токсичностью и высокой гидрофильностью.

Рис. 3. Катионные полимеры, используемые для создания полиплексов, и .

Другим представителем поликатионов, используемых в доставке генетической информации являются полиамидоамины (ПАМАМ, рис. 3). Эти соединения представляют собой сильноветвящиеся дендримеры. Благодаря ветвлению ПАМАМ обладают большой гибкостью, в лучшей степени компактизуют ДНК, полиплексы на их основе более стабильны, чем все остальные, . По своим свойствам имеет много общего с ПЭИ.

Хитозаны (рис. 3) представляют собой полисахариды, построенные из D-глюкозамина и N-ацетил-D-глюкозамина, связанных (1>4) гликозидными связями. В зависимости от молекулярного веса и степени деацетилирования хитозаны формируют стабильные комплексы различной величины с переносимой ДНК. Маленькие, или наоборот, слишком большие полимеры хитозана ведут к снижению экспрессии переносимого гена. Основным достоинством полиплексов на основе хитозана является биодеградабельность, .

На эффективность доставки полиплексов влияют многие факторы: молекулярный вес, степень разветвленности, полимеризации и тип полимера, размер частиц, ионная сила раствора, поверхностные заряды комплексов, а также условия проведения эксперимента. Оптимальный подход должен учитывать каждый из этих факторов и их влияние на свойства комплекса, поглощение клетками-мишенями комплексов, токсичность.

Существуют несколько подходов для обеспечения специфичности действия полиплексов на клетки-мишени. Один из них включает в себя адресную доставку нанокомплексов в определённые типы клеток. Этот подход связан с присоединением к полиплексам компонентов (лигандов), рецепторы к которым в большом количестве присутствуют на поверхности клеток-мишеней. В качестве специфичных лигандов используются различные белки, сахара, пептиды, антитела и т.д. Другая стратегия заключается в использовании таких транспортируемых генов, которые были бы активны только в определённых клетках, при этом доставка комплексов происходит неспецифично, то есть в любые клетки.

Проникновение полиплексов в клетки-мишени

Процесс доставки генетического материала включает два этапа: внеклеточный (путь от места введения до клеток-мишеней) и внутриклеточный (взаимодействие с клетками-мишенями, эндоцитоз, выход из эндосом, доставка в ядро). Внутриклеточные пути транспорта полиплексов представлены на рисунке 4.

Первым барьером, который необходимо преодолеть полиплексу на пути до клетки-мишени является кровь и внеклеточный матрикс. Именно поэтому необходимо подобрать такие физико-химические параметры комплекса, чтобы увеличить его стабильность, избежать неспецифических взаимодействий и возможности иммунного ответа. Во-первых, в составе полиплекса ДНК должна быть защищена от действия внеклеточных нуклеаз. Во-вторых, отрицательно заряженные белки сыворотки крови (альбумин, фибриноген, иммуноглобулины и др.), а также белки внеклеточного матрикса (коллагены) способны адсорбироваться на поверхности заряженных нанокомплексов, что ведет за собой изменение поверхностного заряда полиплексов, приводит к увеличению размера комплексов и к их агрегации. При введении полиплексов в организм они частично накапливаются в тканях и подвергаются фагоцитозу. По этим причинам часто применяют местное введение полиплексов (например, в опухоль при раке) в расчёте на их неспецифическое взаимодействие с клетками ткани.

Рис. 4. Внутриклеточные пути транспорта полиплексов, .

Полиплексы сначала адсорбируются на плазматической мембране, поглощаются путём эндоцитоза, после чего они должны покинуть эндолизосомы и пересечь ядерную оболочку для попадания в ядро. Существуют также альтернативные пути транспорта, не всегда приводящие к доставке комплексов в ядро. Помимо этого, для экспрессии переносимого гена необходима диссоциация полиплекса на катионный полимер и свободную ДНК.

Следующим этапом доставки генетического материала в клетки-мишени является их взаимодействие с плазматической мембраной и поглощение клеткой. Как было отмечено выше, связывание полиплексов с клетками в отсутствие лиганда происходит неспецифично в результате электростатического взаимодействия с отрицательно заряженной плазматической мембраной. В большинстве случаев такие полиплексы поглощаются путём неспецифического адсорбтивного эндоцитоза . При включении лиганда в состав комплекса можно добиться поглощения с помощью клатрин-зависимого рецептор-опосредованного эндоцитоза . Другие пути захвата зависят от типа клеток и включают в себя фагоцитоз и кавеолин-зависимый эндоцитоз. Одна из стратегий для улучшения доставки полиплексов в клетку включает в себя использование вирусных проникающих пептидов, таких как TAT-пептид, впервые выделенный из вируса ВИЧ-1. Использование этих последовательностей обеспечивает попадание конструкций в клетку, и доставку полиплексов в клеточное ядро.

Одним из самых важных этапов транспортного пути полиплексов является их выход из эндосом. Как известно, эндосомы представляют собой систему трубочек и пузырьков, что необходимо для сортировки поглощённых макромолекул. Сортирующие эндосомы расположены ближе к плазматической мембране . За счёт работы протонных помп в них понижается рН (около 6,5 в сортирующих эндосомах). Дальнейший транспорт может идти либо по пути рециркуляции с выбросом поглощённых молекул во внемембранное пространство, либо по литическому пути, когда происходит дальнейшее закисление среды в поздних эндосомах, и макромолекулы поступают в лизосомы. В лизосомах содержимое закисляется до рН 5, и поглощенные молекулы деградируют под действием гидролитических ферментов, которые активируются при низком рН. Продукты деградации удаляются из клетки путём экзоцитоза или переносятся в цитоплазму, где используются как строительный материал.

Считается, что полиплексы на основе ПЭИ в силу своих свойств способны выходить из эндосом благодаря так называемому эффекту «протонной губки» (proton sponge effect). Эта гипотеза основана на том, что катионные полимеры за счёт наличия непротонированных вторичных и третичных аминов создают буферный эффект, в результате чего H±АТФаза, накачивающая протоны в эндосомы, начинает работать активнее. При этом происходит накопление внутри эндосом анионов хлора. В результате из-за резкого увеличения осмотического давления происходит набухание и лизис, что позволяет полиплексам попасть в цитозоль неповреждёнными. Предложен и другой механизм выхода из эндосом для полиплексов, который заключается в дестабилизации эндосомальной мембраны из-за высокой поверхностной плотности заряда нанокомплексов . Комплексы на основе ПЛ и хитозана не вызывают эффекта «протонной губки» и в меньшей степени способны дестабилизировать мембрану эндосом, что приводит к гораздо меньшей эффективности трансфекции.

Выйдя из лизосом, полиплексы оказываются в перинуклеарном пространстве, после чего комплекс диссоциирует на свободный поликатион и ДНК. Считается, что это происходит за счёт конкуренции за катионные группы между фосфатными группами ДНК и низкомолекулярными соединениями и анионами цитоплазмы. В некоторых случаях диссоциация комплекса происходит, по-видимому, в ядре. Главным барьером на пути плазмидной ДНК в клеточное ядро служит двойная ядерная оболочка. Для доставки в ядро макромолекул в их состав включают последовательность ядерной локализации (ПЯЛ), которая в комплексе с?- и?-импортинами будет узнаваема ядерным поровым комплексом (ЯПК) и активно проникать внутрь ядра. Через ЯПК путём пассивной диффузии могут проходить только маленькие молекулы (<40 кД, ~10 нм). Так как освободившаяся после распаковывания комплекса свободная плазмидная ДНК не имеет последовательности ядерной локализации, то в ядро будет проходить очень незначительная часть плазмид (не более 0,1–0,001%). Кроме того, установлено, что около 50% инъецированной ДНК деградирует в цитозоле уже через 1–2 часа после введения . Но т.к. клетки опухолей, против которых и направлена генная терапия, отличаются активной пролиферацией, то ДНК без труда проникает в ядра дочерних клеток во время митотического цикла, когда ядерная оболочка демонтирована.

Механизмы действия терапевтических генов

После проникновения плазмиды в ядро начинается экспрессия терапевтического гена. Для придания специфичности действия полиплексам терапевтический ген в составе плазмиды ставится под контроль промотора (область гена, на которую садится РНК-полимераза перед транскрипцией), активного только в опухолевых тканях. Примерами могут служить промотор гена антиапоптозного белка сурвивина или гена фермента теломеразы. В качестве терапевтического гена может быть использован ген тимидинкиназы вируса простого герпеса (HSVtk), которая обладает способностью фосфорилировать антигерпесные соединения ацикловир и ганцикловир . Эти соединения вводятся в опухоль спустя некоторое время. Далее клеточные киназы (фосфорилирующие ферменты) превращают фосфорилированные ацикловир или ганцикловир в трифосфаты, которые способны включаться во вновь синтезированную ДНК во время удвоения при клеточном делении и терминировать её синтез. В результате клетки, в ядра которых попал ген тимидинкиназы, уничтожаются в присутствии этих веществ. При этом погибают именно делящиеся клетки, а не покоящиеся, которые не синтезируют ДНК и не включают ганцикловир или ацикловир. Такой механизм действия терапевтического гена можно использовать для целей генной терапии раковых опухолей, клетки которых быстро делятся.

Список литературы:

  1. Горбунова В.Н., Баранов В.С. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. С.-Пб., «Специальная литература», 1997, с.287.
  2. Dunlap D.D., Maggi A., Soria M.R., Monaco L. Nanoscopic structure of DNA condensed for gene delivery. //Nucl. Acids. Res., 1997, vol. 25, 3095–3101.
  3. Park T.G., Jeong J.H., Kim S.W. Current status of polymeric gene delivery systems. // Adv. Drug Deliv. Rev., 2006, vol. 58, 467– 486.
  4. Pack D. W., Hoffman A. S., Pun S. and Stayton P. S. Design and development of polymers for gene delivery. // Nature Rev., Drug Discovery, 2005, vol. 4, 581.
  5. Lechardeur D., Verkman A.S., Lukacs G. L. Intracellular routing of plasmid DNA during non-viral gene transfer. // Adv. Drug Deliv. Rev., 2005, vol. 57, 755– 767.
  6. Maxfield F.R. and McGraw T.E. Endocytic Recycling. // Nature Rev. Mol. Cell. Biol., 2004, vol. 5, 121–132.
  7. Reid R., Eng-Chung M., Eng-Chang H. and Topal M.D. Insertion and extension of acyclic, dideoxy, and ara nucleotides by herpesviridae, human alpha and human beta polymerases. // J. Biol. Chem., 1988, vol. 263, 3898–3904.

Дурыманов Михаил , студент Биологического факультета МГУ

Статья – призер научно-популярного конкурса на конференции «Ломоносов 2009» (Биологический факультет, секции «Нанобиотехнология», «Биоинженерия», «Биофизика».

Введение

1 Основные группы ферментов генетической инженерии

1.1 Рестриктазы

1.1.1 Механизм действия рестриктаз

1.1.2 Построение рестрикционных карт

1.3 Лигазы

2 Введение нового гена в клетку

2.1 Регуляция экспрессии гена у прокариот

2.2 Способы прямого введения гена в клетку

2.3 Введение генов в клетки млекопитающих

2.4 Генетическая трансформация соматических клеток млекопитающих

2.5 Генотерапия

2.6 Получение трансгенных животных

Заключение

Список литературы

Введение

Генетическая инженерия - конструирование in vitro функционально активных генетических структур (рекомбинантных ДНК), или иначе - создание искусственных генетических программ (Баев А. А.). По Э. С. Пирузян генетическая инженерия - система экспериментальных приемов, позволяющих конструировать лабораторным путем (в пробирке) искусственные генетические структуры в виде так называемых рекомбинантных или гибридных молекул ДНК.

Речь идет о направленном, по заранее заданной программе конструировании молекулярных генетических систем вне организма с последующим введением их в живой организм. При этом рекомбинантные ДНК становятся составной частью генетического аппарата рецепиентного организма и сообщают ему новые уникальные генетические, биохимические, а затем и физиологические свойства.

Цель прикладной генетической инженерии заключается в конструировании таких рекомбинантных молекул ДНК, которые при внедрении в генетический аппарат придавали бы организму свойства, полезные для человека.

Технология рекомбинантных ДНК использует следующие методы:

Специфическое расщепление ДНК рестрицирующими нуклеазами, ускоряющее выделение и манипуляции с отдельными генами;

Быстрое секвенирование всех нуклеотидов очищенном фрагменте ДНК, что позволяет определить границы гена и аминокислотную последовательность, кодируемую им;

Конструирование рекомбинантной ДНК;

Гибридизация нуклеиновых кислот, позволяющая выявлять специфические последовательности РНК или ДНК с большей точностью и чувствительностью, основанную на их способности связывать комплементарные последовательности нуклеиновых кислот;

Клонирование ДНК: амплификация in vitro с помощью цепной полимеразной реакции или введение фрагмента ДНК в бактериальную клетку, которая после такой трансформации воспроизводит этот фрагмент в миллионах копий;

Введение рекомбинантной ДНК в клетки или организмы.

История генетической инженерии

Генная инженерия появилась благодаря работам многих исследователей в разных отраслях биохимии и молекулярной генетики. На протяжении многих лет главным классом макромолекул считали белки. Существовало даже предположение, что гены имеют белковую природу. Лишь в 1944 году Эйвери, Мак Леод и Мак Карти показали, что носителем наследственной информации является ДНК. С этого времени начинается интенсивное изучение нуклеиновых кислот. Спустя десятилетие, в 1953 году Дж. Уотсон и Ф. Крик создали двуспиральную модель ДНК. Именно этот год принято считать годом рождения молекулярной биологии.

На рубеже 50 - 60-х годов были выяснены свойства генетического кода, а к концу 60-х годов его универсальность была подтверждена экспериментально. Шло интенсивное развитие молекулярной генетики, объектами которой стали E. coli, ее вирусы и плазмиды. Были разработаны методы выделения высокоочищенных препаратов неповрежденных молекул ДНК, плазмид и вирусов. ДНК вирусов и плазмид вводили в клетки в биологически активной форме, обеспечивая ее репликацию и экспрессию соответствующих генов. В 70-х годах был открыт ряд ферментов, катализирующих реакции превращения ДНК. Особая роль в развитии методов генной инженерии принадлежит рестриктазам и ДНК-лигазам.

Историю развития генетической инженерии можно условно разделить на три этапа. Первый этап связан с доказательством принципиальной возможности получения рекомбинантных молекул ДНК in vitro. Эти работы касаются получения гибридов между различными плазмидами. Была доказана возможность создания рекомбинантных молекул с использованием исходных молекул ДНК из различных видов и штаммов бактерий, их жизнеспособность, стабильность и функционирование.

Второй этап связан с началом работ по получению рекомбинантных молекул ДНК между хромосомными генами прокариот и различными плазмидами, доказательством их стабильности и жизнеспособности.

Третий этап - начало работ по включению в векторные молекулы ДНК (ДНК, используемые для переноса генов и способные встраиваться в генетический аппарат клетки-рецепиента) генов эукариот, главным образом, животных.

Формально датой рождения генетической инженерии следует считать 1972 год, когда в Стенфордском университете П. Берг, С. Коэн, Х. Бойер с сотрудниками создали первую рекомбинантную ДНК, содержавшую фрагменты ДНК вируса SV40, бактериофага и E. coli.


1 Основные группы ферментов генетической инженерии

Генетическая инженерия - потомок молекулярной генетики, но своим рождением обязана успехам генетической энзимологии и химии нуклеиновых кислот, так как инструментами молекулярного манипулирования являются ферменты. Если с клетками и клеточными органеллами мы подчас можем работать микроманипуляторами, то никакие, даже самые мелкие микрохирургические инструменты не помогут при работе с макромолекулами ДНК и РНК. Что же делать? В роли "скальпеля", "ножниц" и "ниток для сшивания" выступают ферменты.

Только они могут найти определенные последовательности нуклеотидов, "разрезать" там молекулу или, наоборот, "заштопать" дырку в цепи ДНК. Эти ферменты издавна работают в клетке, выполняя работы по репликации (удвоению) ДНК при делении клетки, репарации повреждений (восстановлению целостности молекулы), в процессах считывания и переноса генетической информации из клетки в клетку или в пределах клетки. Задача генного инженера - подобрать фермент, который выполнил бы поставленные задачи, то есть смог бы работать с определенным участком нуклеиновой кислоты.

Следует отметить, что ферменты, применяемые в генной инженерии, лишены видовой специфичности, поэтому экспериментатор может сочетать в единое целое фрагменты ДНК любого происхождения в избранной им последовательности. Это позволяет генной инженерии преодолевать установленные природой видовые барьеры и осуществлять межвидовое скрещивание.

Ферменты, применяемые при конструировании рекомбинантных ДНК, можно разделить на несколько групп:

Ферменты, с помощью которых получают фрагменты ДНК (рестриктазы);

Ферменты, синтезирующие ДНК на матрице ДНК (полимеразы) или РНК (обратные транскриптазы);

Ферменты, соединяющие фрагменты ДНК (лигазы);

Ферменты, позволяющие осуществить изменение структуры концов фрагментов ДНК.

1.1 Рестриктазы

Общепринято термины "рестриктаза", "эндонуклеаза рестрикции" и "сайт специфическая эндодезоксирибонуклеаза" считать синонимами.

Все рестрикционные эндонуклеазы бактерий узнают специфические, довольно короткие последовательности ДНК и связываются с ними. Этот процесс сопровождается разрезанием молекулы ДНК либо в самом сайте узнавания, либо в каком-то другом, что определяется типом фермента. Наряду с рестрикционной активностью бактериальный штамм обладает способностью метилировать ДНК; для этого процесса характерна такая же специфичность в отношении последовательностей ДНК, как и для рестрикции. Метилаза добавляет метильные группы к адениновым или цитозиновым остаткам в том же сайте, в котором связывается рестрикционный фермент. В результате метилирования сайт становится устойчивым к рестрикции. Следовательно, метилирование защищает ДНК от разрезания.

Различают 3 основных класса рестриктаз: 1, 2 и 3.

Все рестриктазы узнают на двуспиральной ДНК строго определенные последовательности, но рестриктазы 1-го класса осуществляют разрывы в произвольных точках молекулы ДНК, а рестриктазы 2-го и 3-го классов узнают и расщепляют ДНК в строго определенных точках внутри сайтов узнавания или на фиксированном от них расстоянии.

Ферменты типов 1 и 3 имеют сложную субъединичную структуру и обладают двумя типами активностей - модифицирующей (метилирующей) и АТФ-зависимой эндонуклеазной.

Ферменты второго класса состоят из 2 отдельных белков: рестрицирующей эндонуклеазы и модифицирующей метилазы, поэтому в генной инженерии используются исключительно ферменты 2-го класса. Они нуждаются в ионах магния в качестве кофакторов.

В настоящее время выделено более 500 рестриктаз класса 2, однако среди ферментов, выделенных из различных микроорганизмов, встречаются такие, которые узнают на ДНК одни и те же последовательности. Такие пары или группы называют изошизомерами. Различают истинную изошизомерию, когда ферменты узнают одну и ту же последовательность нуклеотидов и разрывают ДНК в одних и тех же точках, и ложную, когда ферменты, узнавая один и тот же сайт на ДНК, производят разрывы в разных точках в пределах того же сайта.

Большинство рестриктаз класса 2 узнают последовательности, содержащие от 4 до 6 нуклеотидных пар, поэтому рестриктазы делят на мелко- и крупнощепящие. Мелкощепящие рестриктазы узнают тетрануклеотид и вносят в молекулы гораздо больше разрывов, чем крупнощепящие, узнающие последовательность из шести нуклеотидных пар. Это связано с тем, что вероятность встречаемости определенной последовательности из четырех нуклеотидов гораздо выше, чем последовательности из шести нуклеотидов. Например, в ДНК бактериофага Т7, состоящей из 40000 пар оснований, отсутствует последовательность, узнаваемая рестриктазой R1 из E. coli.

К мелкощепящим относятся рестриктазы Hpa II и Alu (из Arthrobacter luteus), к крупнощепящим - Eco R I (из Escherichia coli) и Hind III. Если предположить, что участки узнавания рестриктаз распределены вдоль цепи ДНК случайно, то мишень для ферментов, узнающих последовательность (сайт) из четырех нуклеотидов, должна встречаться в среднем 1 раз через каждые 256 пар оснований, а для ферментов, узнающих шесть нуклеотидов, - через 4096 пар оснований. Если сайт рестрикции окажется внутри гена, то обработка ДНК-рестриктазой приведет к его инактивации. Вероятность такого события очень велика при обработке мелкощепящими рестриктазами и незначительна при применении крупнощепящих эндонуклеаз. Поэтому с целью получения неповрежденного гена расщепление проводят поочередно несколькими крупнощепящими рестриктазами, либо применяют прием "недорестрикции", т.е. рестрикцию проводят в таких условиях, когда происходит расщепление лишь в одном сайте.

Методика, разработанная учеными из Калифорнийского Университета в Ирвине (University of California, Irvine) под руководством доктора Питера Донована (Peter Donovan) и основанная на комбинации двух известных способов манипулирования с эмбриональными стволовыми клетками, позволяет вдвое увеличить эффективность доставки ДНК в человеческие эмбриональные стволовые клетки.

Современные методы введения ДНК в чЭСК с помощью химической трансфекции, нуклеофекции и электропорации обладают серьезным недостатком – низкой эффективность. Доставка в чЭСК генетического материала с помощью вирусной инфекции более результативна, но имеет много нежелательных последствий для стволовых клеток и не может быть названа полностью безопасной с медицинской точки зрения, если клетки предназначены для дальнейшей трансплантации.

Новая методика, основанная на комбинации нуклеофекции отдельной стволовой клетки и оптимизированного метода селекции полученных трансгенных колоний, обеспечивает своевременную и стабильную экспрессию трансгенов в клетках. Нуклеофекция заключается в образовании пор в клеточной мембране с помощью электрических импульсов и последующего внедрения в клетку ДНК.

Кроме интересующего гена, модифицирующая ДНК-конструкция несет ген, позволяющий легко отслеживать трансформированную клетку, - например, ген, кодирующий зеленый флюоресцирующий белок (humanized Renilla green fluorescent protein, hrGFP). Такой способ маркировки клеток дает возможность наблюдать за перемещением трансформированных клеток при их трансплантации животным.

Потенциально этот метод мог бы оказаться полезным для терапии моногенных заболеваний, вызванных мутациями одного гена во всех клетках больного человека. По данным Всемирной Организации Здравоохранения, более 10 000 болезней человека имеют моногенную природу. Миллионы людей во всем мире страдают моногенными заболеваниями, к которым относится болезнь Хантингтона, серповидноклеточная анемия, гемофилия и муковисцидоз.

Новый метод расширит возможности манипулирования чЭС клетками, позволит моделировать болезни человека и находить подходящие лекарства. С помощью этой методики ученые смогут корректировать генетические нарушения в стволовых клетках и использовать здоровые клетки в регенеративной медицине.

Колония чЭС клеток, экспрессирующая зеленые флюоресцирующие белки hrGFP .

Статья Hohenstein KA et al. «Nucleofection Mediates High-efficiency Stable Gene Knockdown and Transgene Expression in Human Embryonic Stem Cells» доступна в on-line версии журнала Stem Cells с 6 марта 2008.

Процесс введения рекомбинантной ДНК в бактериальную клетку называется трансформацией . Результатом трансформации является приобретение клеткой-хозяином новых последовательностей ДНК и, следовательно, новых фенотипических признаков, например - устойчивости к определенным антибиотикам. Клетка-хозяин, используемая в таких экспериментах, должна иметь определенный фенотип, в частности r - , т.е. в ней не должно быть ферментов рестрикции; онадолжна быть неспособна к общей рекомбинации (recA -) , чтобы экзогенная ДНК не модифицировалась в результате гомологичной рекомбинации. Одна из самых широко используемых для этих целей культур – это лабораторный штамм бактерий E.coli – штамм К12.

Клетки, способные поглощать чужеродную ДНК, называются компетентными. Компетентность E. coli необходимо индуцировать, а некоторые другие бактерии обладают этим свойством изначально. Долю компетентных клеток можно повысить, используя специальную питательную среду или условия культивирования. Для бактерий, устойчивых к химическим индукторам компетентности или не обладающих природной компетентностью, применяются другие системы доставки ДНК.

Самыми часто применяемыми в лабораторной практике приемами трансформации бактериальных клеток являются:

Трансформация E.coli с помощью обработки хлоридом кальция;

электропорация – увеличение проницаемости клеток под воздействием импульса тока длительностью ~4,5 мс;

Результаты трансформации можно оценивать количественно: определяя либо частоту , либо эффективность трансформации.

Частота трансформации – доля клеток в клеточной популяции, получивших чужеродную ДНК; выражается числом трансформантов к общему числу клеток.

Эффективность трансформации - число трансформантов в расчете на 1 мкг ДНК, взятой для трансформации.

Информация по клонированию рекомбинантных ДНК с помощью плазмидного вектора pBR322, изложенная в данном разделе, суммирована в виде схемы эксперимента и представлена на рисунке 20.

Рис. 20. Клонирование ДНК в плазмидном векторе pBR322

1, 2, 3, 4 и 5 – этапы процедуры клонирования (см. текст).

1. ДНК pBR322 разрезают эндонуклеазой рестрикции PstI в участке, определяющем устойчивость к ампициллину.

2. Фрагменты донорной ДНК, также полученные с помощью PstI и имеющие липкие концы, как и линеаризованный вектор pBR322, с помощью ДНК-лигазы сшивают с векторной ДНК. Следствием образования такой конструкции является деструктурирование гена, обеспечивающего устойчивость к ампициллину. Таким образом, созданная рекомбинантная ДНК при введении в клетки E.coli не сможет обеспечить им выживание на среде с ампициллином.

3. Клетки E.coli трансформируют рекомбинантной ДНК.

4. Суспензию клеток после проведения процедуры трансформации высевают на чашки с агаром и питательной средой, содержащей антибиотик тетрациклин. На этом этапе происходит селекция, т.е. отбор клеток, которые способны расти на среде с тетрациклином. Выросшие на этом агаре клетки содержат рекомбинантную ДНК и ДНК pBR322, в которую не встроилась вставка донорной ДНК, т.е. восстановилась первоначальная структура вектора.

5. Индивидуальные колонии клеток E.coli , выросшие на чашке с тетрациклином пересевают на чашки две чашки, одна из которых содержит агар с ампициллином, а вторая – с тетрациклином. Клетки, содержащие рекомбинантную плазмидную ДНК, растут только на агаре с тетрациклином, поскольку ген, обеспечивающий устойчивость к ампициллину у них деструктурирован за счет встраивания донорной ДНК. В то время как клетки с исходной, т.е. восстановленной векторной ДНК pBR322 растут на обеих чашках, поскольку гены устойчивости к обоим антибиотикам находятся в нативном, т.е. в исходном состоянии.

Из клеток отобранных клонов E.coli экстрагируют плазмидную ДНК и анализируют ее структуру.

Другие плазмидные векторы

Эпоха вектора pBR322, начатая Боливаром и Родригесом в самом начале 80-тых годов ХХ-го столетия, продолжается и по сей день. Однако, при всей своей надежности и классическом соответствии всем необходимым для векторов требованиям, этот вектор имеет всего несколько удобных сайтов для клонирования. Кроме того, отбор трансформированных клеток в экспериментах с рекомбинантными ДНК на его основе занимает много времени. Возникла необходимость разработки альтернативных, более совершенных, систем клонирования. Так была создана группа векторов семейства pUC. В названии векторов этого семейства буквы ”U” и “C” – это первые буквы от слов University of California . Исследователями этого университета была создана серия векторов, имебющих важную черту– наличие в структуре ДНК встроенного синтетического полилинкера , который представляет собой последовательность нуклеотидов, составленную из сайтов узнавания ряда эндонуклеаз рестрикции, уникальных для данного вектора - MCS (Multiple Cloning Sites). Названия индивидуальных векторов из семейства pUC отличаются двузначным числом, а первичная структура разных векторов отличается составом сайтов MCS MCS – Multiple Cloning Sites в полилинкере.

Рассмотрим подробнее особенности векторов, входящих в эту группу, на примере вектора pUC19 (рис. 21).

Плазмида pUC19 имеет длину 2686 п. н. и содержит: ген устойчивости к ампициллину; регулируемый сегмент гена β-галактозидазы (lacZ") лактозного оперона E.coli, ген lacI, кодирующий репрессор, который контролирует экспрессию гена lacZ"; полилинкер - короткую последовательность с множеством уникальных сайтов узнавания для эндонуклеаз (EcoRI, SacI, КрпI, ХmаI, SmaI, BamHI, XbaI, SalI, HinсII, AccI, BspMI, PstI, SphI и HindIII); точку начала репликации плазмиды ColE1.

Рис. 21. Плазмидный вектор pUC19

Объяснение к карте дано в тексте.

Присутствие в плазмиде pUC19 гена, обеспечивающего устойчивость к ампициллину, позволяет отбирать клоны E.coli, содержащие данный вектор или рекомбинантные ДНК на его основе на питательных средах с этим антибиотиком. Такие модульные элементы структуры рассматриваемого вектора как lacZ" , lacI и MCSдают возможность ускорить и интенсифицировать процедуру селекции клонов с рекомбинантными ДНК.

Если клетки, содержащие немодифицированную плазмиду pUC19, выращивать в присутствии изопропил-β-D-тиогалактопиранозида (ИПТГ), который является индуктором lac- оперона, то продукт гена lacI, так называемый репрессор , не сможет связаться с промоторно-операторной областью гена lacZ", и как следствие будут происходить транскрипция и трансляция плазмидного фрагмента гена lacZ". Продукт этого фрагмента свяжется с белком, кодируемым хромосомной ДНК (α-комплементация ), и в результате образуется активная ß-галактозидаза. Последовательность с множеством сайтов рестрикции (полилинкер) встроена в ген lacZ" так, что она не влияет на продукцию функциональной β-галактозидазы, и если в среде присутствует ее субстрат 5-бром-4-хлор-3-индолил-β-D-галактопиранозид (X-Gal), то он будет гидролизоваться под действием этого фермента с образованием продукта синего цвета, окрашивающего колонии клеток, содержащих немодифицированную, т.е. без вставки чужеродной ДНК, плазмиду pUC19 (рис. 22).

Рис. 22. Последовательность процедур клонирования ДНК в векторе pUC19.

1, 2, 3 и 4 – этапы клонирования (см. текст)

1. Донорную ДНК обрабатывают одной из эндонуклеаз рестрикции, для которой имеется сайт в полилинкере. Векторную ДНК pUC19 обрабатывают тем же ферментом

2. Лигирование линеаризованного вектора и вставки с помощью ДНК-лигазы Т4.

3. После процедуры лигирования инкубационной смесью проводят трансформацию клеток, способных к α-комплементации, которые могут синтезировать ту часть ß-галактозидазы (LacZα), которая соединяется с продуктом гена lacZ" с образованием активного фермента.

4. Обработанные клетки высевают на питательную среду с ампициллином, ИПТГ и субстратом для ß-галактозидазы. Нетрансформированные клетки не могут расти в присутствии ампициллина, а клетки, несущие интактную плазмиду, образуют на среде с ампициллином колонии синего цвета. Клетки-хозяева, несущие гибридную, т.е. рекомбинантную, плазмиду, образуют на той же самой среде белые колонии. Это связано с тем, что обычно при встраивании в полилинкер чужеродной ДНК не может образовываться полноценный продукт гена lacZ" , и, следовательно, в процессе α-комплементации не образуется активная ß-галактозидаза, расщепляющая субстрат X-Gal до продукта, который и обеспечивает окрашивание клеток колоний в синий цвет.

Векторы на основе бактериофага λ

Плазмидные векторы позволяют клонировать фрагменты ДНК, размеры которых не превышают 10 т.п.н. Однако для решения задачи клонирования хромосомной ДНК даже небольшого организма, например – бактерии, необходимо создавать полные коллекции фрагментов этой ДНК, поэтому часто приходится работать с более крупными фрагментами. Для этого были разработаны векторы на основе бактериофага λ Ε. coli.

При проникновении фага λ в клетки E.coli. существуют два альтернативных пути развития событий:

1. Литический цикл – фаг начинает активно размножаться и примерно через 20 минут клетка разрушается с высвобождением до 100 новых фаговых частиц.

2. Состояние лизогении – фаговая ДНК включается в хромосому E.coli как профаг и реплицируется в клетке вместе с нормальными бактериальными клетками. Однако при неблагоприятных условиях (нехватка питания) запускается литический цикл (рис. 23):

1. При репликации кольцевой ДНК бактериофага λ образуется линейная молекула, состоящая из повторяющихся сегментов длиной примерно 50 т.п.н. Каждый из этих сегментов представляет собой полноразмерную фаговую ДНК, фланкированную липкими cos -сайтами - одноцепочечными 5"-«хвостами» из 12 нуклеотидов. Их называют липкими (cos ) концами, поскольку они взаимно комплементарны и могут спариваться друг с другом подобно липким концам рестрикционных фрагментов.

2. Фаговая головка вмещает один такой сегмент, затем к головке присоединяется уже собранный отросток.


Рис. 23. Литический путь развития бактериофага λ

1 – упаковка в головку фага одного сегмента полноразмерной фаговой ДНК; 2 – сборка полноценной фаговой частицы.

Размер ДНК фага λ составляет примерно 50 т. п. н., причем значительная ее часть (около 20 т. п. н.) несущественна для размножения фага и отвечает за его встраивание в хозяйскую ДНК. В связи с этим возникла идея, что ее можно заменить фрагментом другой ДНК эквивалентного размера. Образующаяся рекомбинантная молекула будет реплицироваться в клетке как ДНК «рекомбинантного" фага, “вставшего" на литический путь развития. Рекомбинантные молекулы упаковывают в головки бактериофага λ in vitro и после добавления отростков получают инфекционные фаговые частицы (рис. 24).

Рис. 24. Использование векторов на основе фага λ для клонирование фрагментов ДГК в клетках Ε. сoli .

Приготовление экстрактов для осуществления упаковки in vitro ДНК фага λ проводят с помощью двух штаммов E.coli , каждый из которых лизогенен в отношении определенного мутантного штамма фага λ (рис. 25). Один из мутантов не способен синтезировать белок А (один из полипептидов фаговой терминазы), другой – белок Е (белок головки фага). Оба этих белка необходимы для упаковки ДНК фага λ. “А”- и “Е”-экстракты смешивают и добавляют конкатемерную (сегменты полноразмерной фаговой ДНК, полимеризованные по cos -сайтам) ДНК фага, которая связывается с терминазой прежде, чем происходит разрезание в cos -сайтах, и упаковывается в фаговые головки.

Рис. 25. Упаковка in vitro ДНК фага λ

При упаковке молекулы ДНК длиной менее 38 т.п.н. получается неинфекционная фаговая частица, а фрагменты длиной более 52 т, п. н. не умещаются в головку. Сегменты длиной 50 т. п. н. в линейной молекуле ДНК разделены cos-сайтами, и именно по этим сайтам разрезается молекула, когда очередной сегмент заполняет головку. Разрезание осуществляет фермент, находящийся у входа в головку.

Процесс введения рекомбинантной фаговой ДНК со встроенным фрагментом чужеродной генетической информации в клетки-реципиенты основан на естественном природном явлении – трансдукции фаговой ДНК.

Трансдукция (лат. transduction - перемещение) представляет собой процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Таким образом, трансформация бактериальных клеток с помощью рекомбинантных ДНК на основе фаговой ДНК не требует специальной подготовки клеток-реципиентов или какого-либо специального приборного оснащения.

Для поиска клеток, содержащих фаги с рекомбинантными ДНК, используют методы молекулярной гибридизации и иммунологический скрининг, которые рассмотрим в следующем разделе.

Как показывают многочисленные исследования, использование различных вирусов является весьма эффективным решением, которое позволяет пробраться через имунную защиту организма , а затем инфицировать клетки, используя их для распространения вируса. Для осуществления данной процедуры, генные инженеры выбрали наиболее подходящие вирусы из группы ретровирусов и аденовирусов. Ретровирусы привносят генетическую информацию в виде рибонуклеиновой кислоты (РНК), молекулы, похожей на молекулу ДНК, которая помогает перерабатывать генетическую информацию, сохраненную в ДНК. Как только удается проникнуть вглубь так называемой клетки-мишени, из молекулы РНК получается копия молекулы ДНК. Данный процесс называется обратной транскрипцией. Как только новая молекула ДНК оказывается присоединенной к клетке, все новые копии клеток будут содержать этот модифицированный ген.

Аденовирусы несут генетическую информацию сразу в виде ДНК, который доставляется в неделящуюся клетку. Хотя эти вирусы доставляют ДНК непосредственно в ядро клетки-мишени , ДНК не совмещается с геномом клетки. Таким образом, модифицированный ген и генетическая информация не передаются дочерним клеткам. Преимуществом генной терапии, проводимой с помощью аденовирусов, заключается в том, что существует возможность введения генов в клетки нервной системы и в слизистую оболочку дыхательных путей, опять же, посредством вектора. Кроме того, существует и третий метод генной терапии, осуществляемый посредством так называемых аденоассоциированных вирусов. Эти вирусы содержат относительно небольшое количество генетической информации , и их гораздо сложнее вывести, чем ретровирусы и аденовирусы. Однако преимущество аденоассоциированных вирусов заключается в том, что они не вызывают реакции иммунной системы человека.

Генеалогический метод антропогенетики

В основе этого метода лежит составление и анализ родословных. Этот метод широко применяют с древних времен и до наших дней в коневодстве, селекции ценных линий крупного рогатого скота и свиней, при получении чистопородных собак, а также при выведении новых пород пушных животных.

Как метод изучения генетики человека генеалогический метод стали применять только с начала XX столетия, когда выяснилось, что анализ родословных, в которых прослеживается передача из поколения в поколение какого-то признака (заболевания), может заменить собой фактически неприменимый в отношении человека гибридологический метод.

При составлении родословных исходным является человек - пробанд, родословную которого изучают. Обычно это или больной, или носитель определенного признака, наследование которого необходимо изучить. При составлении родословных таблиц используют условные обозначения, предложенные Г. Юстом в 1931 г. (рис. 6.24). Поколения обозначают римскими цифрами, индивидов в данном поколении - арабскими.

С помощью генеалогического метода может быть установлена наследственная обусловленность изучаемого признака, а также тип его наследования (аутосомно-доминантный, аутосомно-рецессивный, X-сцепленный доминантный или рецессивный, Y-сцепленный). При анализе родословных по нескольким признакам может быть выявлен сцепленный характер их наследования, что используют при составлении хромосомных карт. Этот метод позволяет изучать интенсивность мутационного процесса, оценить экспрессивность и пенетрантность аллеля. Он широко используется в медико-генетическом консультировании для прогнозирования потомства. Однако необходимо отметить, что генеалогический анализ существенно осложняется при малодетности семей.