Факторы влияющие на растяжимость легочной ткани. Исследование эластических свойств легких при дифференциальной диагностике легочных заболеваний

Давление, создаваемое эластической паренхимой легких, называется давлением эластической отдачи легких (Pэласт) и представляет собой разницу между давлением внутри альвеол (альвеолярным давлением, Pальв) и давлением внутри плевральной полости (плевральным давлением, Pплевр): Pэласт = Ральв - Рплевр. В основе измерения эластической отдачи легких лежат два принципа: 1) давление, необходимое для растяжения легких до определенного объема, равно давлению эластической отдачи при этом объеме; 2) в статических условиях при отсутствии потока и при открытой голосовой щели Ральв=0, а Pэласт= - Рплевр. Таким образом, для оценки давления эластической отдачи и статической растяжимости легких нужно измерить Рплевр при различных легочных объемах.

Поскольку пищевод проходит через плевральное пространство, разумно предположить, что внутрипищеводное давление позволяет вполне надежно оценить динамику изменения Рплевр. Это предположение действует до тех пор, пока нормально функционируют верхний и нижний пищеводные сфинктеры и отсутствует сдавление пищевода (например, за счет активного сокращения мышц пищевода или пассивного сдавления окружающими структурами средостения). Таким образом, у лиц без заболеваний пищевода, которые находятся в положении сидя или стоя, плевральное давление можно измерить косвенно - измеряя внутрипищеводное давление.

ИЗМЕРЕНИЕ

Пищеводное давление регистрируют с помощью катетера с маленьким баллончиком на конце. Внутрибаллонное давление отражает внутрипищеводное давление, которое, в свою очередь, отражает окружающее Рплевр. Эта методика приводит к некоторым искажениям, регистрируется более положительная величина давления за счет сдавления баллончика стенками пищевода. Для уменьшения искажения используют латексный баллончик 10 см длиной и 2,5 см в диаметре, с тонкими стенками (0,04 см), который содержит небольшой объем воздуха (200 - 400 мл).

Рплевр меняется в соответствии с вертикальным градиентом: наиболее отрицательное давление внизу, у основания грудной клетки. Обычно измеряют давление в нижней трети пищевода для того, чтобы определить давление, необходимое для растяжения большей части легких. Исследование проводят, вводя баллончик в пищеводно-желудочное соединение, которое легко определяется по положительному давлению, создаваемому при втяжении воздуха носом на вдохе, и затем вытягивают назад на 10 см.

РАСТЯЖИМОСТЬ ЛЕГКИХ

Когда баллончик установлен на нужном уровне, можно измерить соотношение между изменениями объема легких и Рплевр.

Статическая легочная растяжимость представляет собой наклон кривой давление - объем, полученной во время спадения легких от уровня ОЕЛ, и определяется стандартным протоколом. Следует сделать 3 максимально глубоких вдоха, что позволяет стандартизировать паттерн дыхания. На третьем вдохе пациент задерживает дыхание на уровне ОЕЛ на 3 - 5 с и затем делает медленный выдох, во время которого воздушный поток прерывается закрытием ротовой заслонки на 2 - 3 с на уровне каждого объема. Повторение этого маневра 4 - 5 раз дает достаточную информацию о взаимоотношении изменений объема легких и изменений Рэласт. Для построения кривой давление - объем необходимо измерять объем при определенном Рэласт. Это легко осуществимо при бодиплетизмографии. Другим, но менее точным способом, является метод разведения газов. В этом случае необходимо сделать предположение, что объемы легких были постоянными и не изменялись во времени.

Измерение растяжимости позволяет получить наибольшую информацию об упругости легких. Важно отметить, что растяжимость, соответствующая крутизне наклона кривой, зависит от исходного легочного объема. Обычно растяжимость определяют по углу наклона, начиная с объема, превышающего ФОЕ на 0,5 л. Однако в этом случае величина, выражающая легочную растяжимость, в большей степени находится под влиянием факторов, определяющих ФОЕ, чем просто под влиянием взаимосвязи между легочными объемами и давлением, растягивающим легкие. На практике часто вычисляют коэффициент ретракции (давление эластической отдачи легких на уровне ОЕЛ, деленное на ОЕЛ). Существуют должные значения как для растяжимости, так и для коэффициента ретракции, хотя высокая вариабельность этих показателей ограничивает их применение у конкретного больного.

Максимальную информацию об эластической отдаче легких можно получить, анализируя кривую давление - объем целиком . Такой график часто помогает понять причину снижения объема легких: слабость дыхательной мускулатуры, патология грудной клетки или поражение паренхимы легких. При мышечной слабости/патологии грудной клетки легочная растяжимость в норме, а при патологии паренхимы легких она снижается. Причину снижения растяжимости определить гораздо труднее: истинное повышение эластических свойств легочной ткани или уменьшение числа альвеол, соединяющихся с дыхательными путями?

Динамической легочной растяжимостью называют изменение объема легких относительно изменения давления при наличии воздушного потока. Давление измеряется во время дыхания, в моменты когда скорость потока равна нулю. При нормальном сопротивлении дыхательных путей растяжимость слабо зависит от частоты дыхания. При увеличении сопротивления - динамическая растяжимость может снизиться, прежде чем обычные исследования выявят отклонения от нормы. Изменения динамической растяжимости, зависящие от частоты дыхания, называются частотно-зависимой растяжимостью. Таким образом, при отсутствии изменений в общем Raw или ОФВ1 снижение динамической растяжимости легких позволяет заподозрить возможное сужение мелких периферических дыхательных путей .

КЛИНИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ПОКАЗАТЕЛЕЙ ПОТОК - ОБЪЕМ

ИСТОЧНИКИ ВАРИАБЕЛЬНОСТИ

Европейское сообщество стали и угля (ECCS) и Американское торакальное общество (ATS) опубликовали списки уравнений должных значений для спирометрии , а также рекомендации по интерпретации измерения функции легких, включая спирометрическое исследование и критерии достоверности бронходилатационной реакции при проведении фармакологических проб . При этом особое внимание уделяется необходимости тщательного лабораторного контроля за техническими и биологическими источниками вариабельности.

Биологическая вариабельность может быть обусловлена суточными колебаниями показателей, курением или воздействием других химических/физических агентов. Кроме того, состояние респираторной системы может измениться под воздействием самой процедуры измерения; например, глубокий вдох может вызвать бронходилатацию и изменение эластических свойств легкого. Вариабельность функциональных показателей у одного и того же пациента может быть обусловлена изменением активности патологического процесса (инфекция, контакт с профессиональными вредностями и аллергеном), влиянием поллютантов на лиц с гиперреактивностью дыхательных путей. Легочная функция может изменяться под воздействием препаратов, оказывающих влияние на просвет бронхов. Ошибки оператора могут быть техническими, например вследствие различий в методике проведения исследования, в расчетах и трактовке данных.

Биологическая вариабельность сводится к минимуму, если уделяется пристальное внимание времени и условиям проведения теста. Техническую вариабельность можно минимизировать путем регулярной калибровки, частой проверки работы оборудования, поддержанием его рабочего состояния, тщательной инструкцией пациента, допуском к работе только высококвалифицированного персонала, способного проводить исследование профессионально и в соответствии со стандартными протоколами.

НОРМАЛЬНЫЕ ВЕЛИЧИНЫ

При популяционных исследованиях было выявлено, что распределения ОФВ1 и ФЖЕЛ соответствуют нормальному распределению только в среднем возрастном диапазоне. Кроме того, распределения скоростных показателей и отношения ОФВ1/ФЖЕЛ не являются симметричными . Поэтому работы по разработке уравнений должных величин должны включать строгие определения верхних и нижних границ нормального диапазона или обеспечить информацию, позволяющую вычислить нижнюю границу . С помощью регрессионной модели можно вычислить нижнюю границу нормальных значений: для спирометрических показателей это значения ниже пятой процентили, а не - 1,64xSEE (где SEE - стандартная ошибка оценки, являющаяся критерием вариабельности данных относительно регрессионной линии) . Практика использования 80% от должных значений в качестве фиксированного значения для нижней границы нормальных значений ФЖЕЛ и ОФВ1 может быть приемлема у детей, но может приводить к существенным ошибкам при интерпретации функции легких у взрослых . Использование 70% в качестве нижней границы нормы для отношения ОФВ1/ФЖЕЛ приводит к значительному числу ложноположительных результатов у мужчин в возрасте старше 40 лет и у женщин старше 50 лет , так же к гипердиагностике ХОБЛ у пожилых лиц, никогда не куривших и не имеющих характерных клинических симптомов . Для скоростных показателей нижняя граница нормальных значений составляет 50 - 60% от должных значений. Совершенствуются оборудование и методы исследования, поэтому современные математические модели позволяют более точно оценить функцию легких. Для этого следует регулярно обновлять уравнения должных величин, например каждые 10 лет, также необходимо учитывать возможность применения более новых уравнений должных величин и оценивать правильность интерпретации при длительном наблюдении за пациентами .


4. Изменение объема легких во время вдоха и выдоха. Функция внутриплеврального давления. Плевральное пространство. Пневмоторакс.
5. Фазы дыхания. Объем легкого (легких). Частота дыхания. Глубина дыхания. Легочные объемы воздуха. Дыхательный объем. Резервный, остаточный объем. Емкость легких.

7. Альвеолы. Сурфактант. Поверхностное натяжение слоя жидкости в альвеолах. Закон Лапласа.
8. Сопротивление дыхательных путей. Сопротивление легких. Воздушный поток. Ламинарный поток. Турбулентный поток.
9. Зависимость «поток-объем» в легких. Давление в дыхательных путях при выдохе.
10. Работа дыхательных мышц в течение дыхательного цикла. Работа дыхательных мышц при глубоком дыхании.

При вдохе увеличению объема грудной полости препятствуют эластическая тяга легких , движение ригидной грудной клетки, органы брюшной полости и, наконец, сопротивление дыхательных путей движению воздуха в направлении альвеол. Первый фактор, а именно эластическая тяга легких, в наибольшей степени препятствует увеличению объема легких во время инспирации.

Растяжимость легких (легочной ткани).

В нормальных физиологических условиях глубина вдоха может быть ограничена только физическими свойствами легочной ткани и грудной клетки. Сопротивление раздуванию легких, которое возникает при поступлении в них воздуха, обусловлено растяжимостью их соединительной ткани и сопротивлением дыхательных путей потоку воздуха. Мерой эластических свойств легочной ткани является растяжимость легких, которая характеризует степень увеличения объема легких в зависимости от степени уменьшения внутриплеврального давления:

где С - растяжимость (англ. - compliance), dV - изменение легочного объема (мл), а dР - изменение внутриплеврального давления (см водн. ст.). Растяжимость характеризует количественно степень изменения объема легких у человека в зависимости от степени изменения при вдохе внутриплеврального давления. Грудная клетка также обладает эластическими свойствами, поэтому растяжимость тканей легких и тканей грудной клетки обусловливает эластические свойства всего аппарата внешнего дыхания человека.

Рис. 10.6. Кривая растяжимости (комплайенса) легких человека . Кривые справа показывают изменение дыхательного объема легких и общей емкости легких, возникающие при изменениях внутриплеврального давления без учета влияния тканей грудной клетки. Легкие полностью не спадаются, если внутриплевральное давление становится равным нулю (точка 1). Кривые комплайенса совпадают в точке 2 при большом объеме в легких, когда легочная ткань достигает предела эластического растяжения. Вд - внутриплевральное давление. Слева - схема регистрации изменений внугриплеврального давления и дыхательного объема легких.

На рис. 10.6 показано изменение легочного объема , которое возникает при изменениях внутриплеврального давления. Восходящая и нисходящая линии характеризуют раздувание и спадение легких соответственно. Фрагмент рис. 10.6 слева демонстрирует, каким образом могут быть измерены значения легочного объема и внутриплеврального давления, вынесенные на график. Объем легких не уменьшается до нуля, когда величина внутриплеврального давления становится равной нулю. Раздувание легких с уровня их минимального объема требует усилия для того, чтобы раскрыть спавшиеся стенки альвеол в силу значительного поверхностного натяжения жидкости, покрывающей как их поверхность, так и поверхность дыхательных путей. Поэтому кривые, полученные при раздувании и спадении легких, не совпадают друг с другом, и их нелинейное изменение называется гистерезисом .

Легкие при спокойном дыхании никогда не спадаются полностью, поэтому кривая спадения описывает изменения легочного объема при изменении величины внутриплеврального давления в диапазоне от -2 см. водн. ст. до -10 см водн. ст. В норме легкие человека имеют высокую растяжимость (200 мл/см водн. ст.). Эластичность легочной ткани обусловлена свойствами соединительных волокон легочной ткани. С возрастом эти волокна, как правило, снижают тонус, что сопровождается увеличением растяжимости и уменьшением эластической тяги легких. При повреждении легочной ткани или при избыточном развитии в ней соединительной ткани (фиброз) легкие становятся плохо растяжимыми, величина их растяжимости снижается, что затрудняет выполнение вдоха и требует значительно большего усилия дыхательных мышц, чем в норме.

Легочная растяжимость обусловлена не только эластичностью легочной ткани, но и поверхностным натяжением слоя жидкости, покрывающей альвеолы. По сравнению с эластической тягой легких, влияние на величину легочной растяжимости во время дыхания фактора поверхностного натяжения слоя жидкости, покрывающей альвеолы, имеет более сложную природу.

Основной (хотя и не единственной) функцией легких является обеспечение нормального газообмена. Внешнее дыхание - это процесс газообмена между атмосферным воздухом и кровью в легочных капиллярах, в результате которого происходит артериализация состава крови: повышается давление кислорода и снижается давление СО2. Интенсивность газообмена в первую очередь определяется тремя патофизиологическими механизмами (легочной вентиляцией, легочным кровотоком, диффузией газов через альвеолярно-капиллярную мембрану), которые обеспечиваются системой внешнего дыхания.

Легочная вентиляция

Легочная вентиляция определяется следующими факторами (А.П. Зильбер):

  1. механическим аппаратом вентиляции, который, в первую очередь, зависит от активности дыхательных мышц, их нервной регуляции и подвижности стенок грудной клетки;
  2. эластичностью и растяжимостью легочной ткани и грудной клетки;
  3. проходимостью воздухоносных путей;
  4. внутрилегочным распределением воздуха и его соответствием кровотоку в различных отделах легкого.

При нарушениях одного или нескольких из приведенных выше факторов могут развиваться клинически значимые вентиляционные нарушения, проявляющиеся несколькими типами вентиляционной дыхательной недостаточности.

Из дыхательных мышц наиболее значимая роль принадлежит диафрагме. Ее активное сокращение приводит к уменьшению внутригрудного и внутриплеврального давления, которое становится ниже атмосферного давления, в результате чего и происходит вдох.

Вдох осуществляется за счет активного сокращения дыхательных мышц (диафрагмы), а выдох происходит в основном за счет эластической тяги самого легкого и грудной стенки, создающей экспираторный градиент давления, в физиологических условиях достаточный для выведения воздуха через воздухоносные пути.

При необходимости увеличения объема вентиляции происходит сокращение наружных межреберных, лестничных и грудинно-ключично-сосцевидных мышц (дополнительные инспираторные мышцы), также приводящее к увеличению объема грудной клетки и снижению внутригрудного давления, что способствует вдоху. Дополнительными экспираторными мышцами считают мышцы передней брюшной стенки (наружные и внутренние косые, прямые и поперечные).

Эластичность легочной ткани и грудной клетки

Эластичность легких. Движение потока воздуха во время вдоха (внутрь легких) и выдоха (из легких) определяется градиентом давления между атмосферой и альвеолами так называемым трансторакальным давлением (Р тр / т):

Ртр/т = Р альв - Р атм где Р алв, - альвеолярное, а Р атм - атмосферное давление.

Во время вдоха Р альв и Р тр/т становятся отрицательными, во время выдоха - положительными. В конце вдоха и в конце выдоха, когда воздух по воздухоносным путям не движется, а голосовая щель открыта, Р альв равно Р атм.

Уровень Р альв в свою очередь зависит от величины внутриплеврального давления (Р пл) и так называемого давления эластической отдачи легкого (Р эл):

Давление эластической отдачи - это давление, создаваемое эластической паренхимой легкого и направленное внутрь легкого. Чем выше эластичность легочной ткани, тем более значительным должно быть снижение внутриплеврального давления, чтобы произошло расправление легкого во время вдоха, и, следовательно, тем большей должна быть активная работа инспираторных дыхательных мышц. Высокая эластичность способствует более быстрому спадению легкого во время выдоха.

Еще один важный показатель, обратный эластичности легочной ткани - апатическая растяжимость легкого - представляет собой меру поддатливости легкого при его расправлении. На растяжимость (и величину давления эластической отдачи) легкого влияет множество факторов:

  1. Объем легкого: при малом объеме (например, в начале вдоха) легкое более податливо. При больших объемах (например, на высоте максимального вдоха) растяжимость легкого резко уменьшается и становится равной нулю.
  2. Содержание эластических структур (эластина и коллагена) в легочной ткани. Эмфизема легких, для которой, как известно, характерно снижение эластичности легочной ткани, сопровождается увеличением растяжимости легкого (снижением давления эластической отдачи).
  3. Утолщение альвеолярных стенок вследствие их воспалительного (пневмония) или гемодинамического (застой крови в легком) отека, а также фиброзирование ткани легкого существенно уменьшают растяжимость (податливость) легкого.
  4. Силы поверхностного натяжения в альвеолах. Они возникают па поверхности раздела газа и жидкости, которая изнутри тонкой пленкой выстилает альвеолы, и стремятся уменьшить площадь этой поверхности, создавая внутри альвеол положительное давление. Таким образом, силы поверхностного натяжения вместе с эластическими структурами легких обеспечивают эффективное спадение альвеол во время выдоха и в то же время препятствуют расправлению (растяжению) легкого во время вдоха.

Сурфактант, выстилающий внутреннюю поверхность альвеолы - это вещество, уменьшающее силу поверхностного натяжения.

Активность сурфактанта тем выше, чем он плотнее. Поэтому па вдохе, когда плотность и, соответственно, активность сурфактанта уменьшается, силы поверхностного натяжения (т.е. силы, стремящиеся сократить поверхность альвеол) увеличиваются, что способствует последующему спадению легочной ткани во время выдоха. В конце выдоха плотность и активность сурфактанта возрастают, а силы поверхностного натяжения уменьшаются.

Таким образом, после окончания выдоха, когда активность сурфактанта максимальна, а силы поверхностного натяжения, препятствующие расправлению альвеол, минимальны, дли последующего расправления альвеол на вдохе требуются меньшие затраты энергии.

Важнейшими физиологическими функциями сурфактанта являются:

  • увеличение растяжимости легкого благодаря снижению сил поверхностного натяжения;
  • уменьшение вероятности спадения (коллапса) альвеол во время выдоха, поскольку при малых объемах легкого (в конце выдоха) его активность максимальна, а силы поверхностного натяжения минимальны;
  • предотвращение перераспределения воздуха из более мелких в более крупные альвеолы (согласно закону Лапласа).

При заболеваниях, сопровождающихся дефицитом сурфактанта, ригидность легких увеличивается, альвеолы спадаются (развиваются ателектазы), возникает дыхательная недостаточность.

Пластическая отдача грудной стенки

Эластические свойства грудной стенки, которые также оказывают большое влияние на характер легочной вентиляции, определяются состоянием костного скелета, межреберных мышц, мягких тканей, париетальной плевры.

При минимальных объемах грудной клетки и легких (во время максимального выдоха) и в начале вдоха эластическая отдача грудной стенки направлена кнаружи, что создает отрицательное давление и способствует расправлению легкого. По мере увеличения объема легкого во время вдоха эластическая отдача грудной стенки уменьшатся. Когда объем легкого достигает примерно 60% величины ЖЕЛ, эластическая отдача грудной стенки уменьшается до нуля, т.е. до уровня атмосферного давления. При дальнейшем увеличении объема легких эластическая отдача грудной стенки направлена кнутри, что создает положительное давление и способствует спадению легких во время последующего выдоха.

Некоторые заболевания сопровождаются повышением ригидности грудной стенки, что оказывает влияние на способность грудной клетки растягиваться (во время вдоха) и спадаться (во время выдоха). К числу таких заболеваний относятся ожирение, кифо- сколиоз, эмфизема легких, массивные шварты, фиброторакс и др.

Проходимость воздухоносных путей и мукоцилиарный клиренс

Проходимость воздухоносных путей во многом зависит от нормального дренирования трахеобронхиального секрета, что обеспечивается, прежде всего, функционированием механизма мукоцилиарного очищения (клиренса) и нормальным кашлевым рефлексом.

Защитная функция мукоцилиарного аппарата определяется адекватной и согласованной функцией мерцательного и секреторного эпителия, в результате чего тонкая пленка секрета перемещается по поверхности слизистой оболочки бронхов и инородные частицы удаляются. Перемещение бронхиального секрета происходит за счет быстрых толчков ресничек в краниальном направлении с более медленной отдачей в противоположную сторону. Частота колебаний ресничек составляет 1000-1200 в мин, что обеспечивает движение бронхиальной слизи со скоростью 0,3-1,0 см/мин в бронхах и 2-3 см/мин в трахее.

Следует также помнить, что бронхиальная слизь состоит из 2-х слоев: нижнего жидкого слоя (золя) и верхнего вязко-эластичного - геля, которого касаются верхушки ресничек. Функция реснитчатого эпителия во многом зависит от соотношения толщины юля и геля: увеличение толщины геля или уменьшение толщины золя приводят к снижению эффективности мукоцилиарного клиренса.

На уровне респираторных бронхиол и альвеол мукоцилиарного аппарата ист. Здесь очищение осуществляется с помощью кашлевого рефлекса и фагоцитарной активности клеток.

При воспалительном поражении бронхов, особенно хроническом, эпителий морфологически и функционально перестраивается, что может приводить к мукоцилиарной недостаточности (снижению защитных функций мукоцилиарного аппарата) и скоплению мокроты в просвете бронхов.

В патологических условиях проходимость воздухоносных путей зависит не только от функционирования механизма мукоцилиарного очищения, но и от наличия бронхоспазма, воспалительного отека слизистой оболочки и феномена раннего экспираторного закрытия (коллапса) мелких бронхов.

Регуляция просвета бронхов

Тонус гладкой мускулатуры бронхов определяется несколькими механизмами, связанными со стимуляцией многочисленных специфических рецепторов бронхов:

  1. Холинергические (парасимпатические) влияния происходят в результате взаимодействия нейромедиатора ацетилхолина со специфическими мускариновыми М-холинорецепторами. В результате такого взаимодействия развивается бронхоспазм.
  2. Симпатическая иннервация гладкой мускулатуры бронхов у человека выражена в малой степени, в отличие, например, от гладкой мускулатуры сосудов и сердечной мышцы. Симпатические влияния на бронхи осуществляются в основном благодаря воздействию циркулирующего адреналина на бета2-адренорецепторы, что приводит к расслаблению гладкой мускулатуры.
  3. На тонус гладкой мускулатуры влияет также т.н. «неадренергическая, нехолинергическая» нервная система (НАНХ), волокна которой проходят в составе блуждающего нерва и высвобождают несколько специфических нейромедиаторов, взаимодействующих с соответствующими рецепторами гладкой мускулатуры бронхов. Важнейшими из них являются:
    • вазоактивный интестинальный полипептид (VIP);
    • субстанция Р.

Стимуляция VIP-рецепторов приводит к выраженному расслаблению, а бета-рецепторов к сокращению гладких мышц бронхов. Считается, что нейроны НАНХ-системы оказывают наибольшее влияние па регуляцию просвета воздухоносных путей (К.К. Murray).

Кроме того, в бронхах содержится большое количество рецепторов, взаимодействующих с различными биологически активными веществами, в том числе с медиаторами воспаления - гистамином, брадикинином, лейкотриенами, простагландинами, фактором активации тромбоцитов (ФАТ), серотонином, аденозином и др.

Тонус гладкой мускулатуры бронхов регулируется несколькими нейрогуморальными механизмами:

  1. Дилатация бронхов развивается при стимуляции:
    • бета2-адренорецепторов адреналином;
    • VIР-рецепторов (системы НАНХ) вазоактивным интестинальным полипептидом.
  2. Сужение просвета бронхов возникает при стимуляции:
    • М-холинергических рецепторов ацетилхолином;
    • рецепторов к субстанции Р (системы НАНХ);
    • Альфа-адренорецепторов (например, при блокаде или снижении чувствительности бета2-адренергических рецепторов).

Внутрилегочное распределение воздуха и его соответствие кровотоку

Неравномерность вентиляции легких, существующая в норме, определяется, прежде всего, неоднородностью механических свойств легочной ткани. Наиболее активно вентилируются базальные, в меньшей степени - верхние отделы легких. Изменение эластических свойств альвеол (в частности, при эмфиземе легких) или нарушение бронхиальной проходимости значительно усугубляют неравномерность вентиляции, увеличивают физиологическое мертвое пространство и снижают эффективность вентиляции.

Диффузия газов

Процесс диффузии газов через альвеолярно-капиллярного мембрану зависит

  1. от градиента парциального давления газов по обе стороны мембраны (в альвеолярном воздухе и в легочных капиллярах);
  2. от толщины альвеолярно-капиллярной мембраны;
  3. от общей поверхности зоны диффузии в легком.

У здорового человека парциальное давление кислорода (РО2) в альвеолярном воздухе в норме составляет 100 мм рт. ст., а в венозной крови - 40 мм рт. ст. Парциальное давление СО2 (РСО2) в венозной крови составляет 46 мм рт. ст., в альвеолярном воздухе - 40 мм рт. ст. Таким образом, градиент давления по кислороду составляет 60 мм рт. ст., а по углекислому газу - всего 6 мм рт. ст. Однако скорость диффузии СО2 через альвеолярно-капиллярную мембрану примерно в 20 раз больше, чем О2. Поэтому обмен СО2 в легких происходит достаточно полно, несмотря на сравнительно низкий градиент давления между альвеолами и капиллярами.

Альвеолярно-капиллярная мембрана состоит из сурфактантного слоя, выстилающего внутреннюю поверхность альвеолы, альвеолярной мембраны, интерстициального пространства, мембраны легочного капилляра, плазмы крови и мембраны эритроцита. Повреждение каждого из этих компонентов альвеолярно-капиллярной мембраны может приводить к существенному затруднению диффузии газов. Вследствие этого при заболеваниях указанные выше значения парциальных давлений О2 и СО2 в альвеолярном воздухе и капиллярах могут существенно изменяться.

Легочный кровоток

В легких существуют две системы кровообращения: бронхиальный кровоток, относящийся к большому кругу кровообращения, и собственно легочный кровоток, или так называемый малый круг кровообращения. Между ними как при физиологических, так и при патологических условиях существуют анастомозы.

Легочный кровоток в функциональном отношении расположен между правой и левой половинами сердца. Движущей силой легочного кровотока служит градиент давления между правым желудочком и левым предсердием (в норме составляющий около 8 мм рт. ст.). В легочные капилляры по артериям поступает бедная кислородом и насыщенная углекислым газом венозная кровь. В результате диффузии газов в области альвеол происходят насыщение крови кислородом и ее очищение от углекислого газа, в результате чего от легких в левое предсердие по венам оттекает артериальная кровь. На практике эти величины могут колебаться в значительных пределах. Особенно это относится к уровню РаО2 в артериальной крови, который составляет обычно около 95 мм рт. ст.

Уровень газообмена в легких при нормальной работе дыхательных мышц, хорошей проходимости воздухоносных путей и малоизмененной эластичности легочной ткани определяется скоростью перфузии крови через легкие и состоянием альвеолярно-капиллярной мембраны, через которую под действием градиента парциального давления кислорода и углекислого газа осуществляется диффузия газов.

Вентиляционно-перфузионные отношения

Уровень газообмена в легких, помимо интенсивности легочной вентиляции и диффузии газов, определяется также величиной вентиляционно-перфузионного отношения (V/Q). В норме при концентрации кислорода но вдыхаемом воздухе 21% и нормальном атмосферном давлении отношение V/Q составляет 0,8.

При прочих равных условиях уменьшение оксигенации артериальной крови может быть обусловлено двумя причинами:

  • уменьшением легочной вентиляции при сохраненном прежнем уровне кровотока, когда V/Q
  • уменьшением кровотока при сохраненной вентиляции альвеол (V/Q > 1,0).

В.Ю. Мишин

Одной из основных задач клинического обследования больного является определение функционального состояния его дыхательной системы , имеющего большое значение при решении вопросов лечения, прогноза, а также оценки трудоспособности.

Современные функциональные методы абсолютно необходимы для оценки отдельных синдромов нарушения функции внешнего дыхания (ФВД) . Они позволяют определять такие характеристики респираторной функции, как бронхиальная проводимость, воздухонаполненность, эластические свойства, диффузионная способность и респираторная мышечная функция.

Функциональные пробы дают возможность выявлять ранние формы дыхательной недостаточности, многие из которых являются обратимыми. Определение характера ранних функциональных нарушений позволяет подобрать наиболее рациональные терапевтические мероприятия для их устранения.

Основные методы исследования ФВД :

  • спирометрия ;
  • пневмотахометрия ;
  • исследование легочной диффузии ;
  • измерение растяжимости легких ;
  • непрямая калориметрия .

Первые два метода считаются скрининговыми и обязательны для использования во всех лечебных учреждениях, осуществляющих наблюдение, лечение и реабилитацию легочных больных. Такие методы, как бодиплетизмография, исследование диффузионной способности и растяжимости легких являются более углубленными и дорогостоящими методами. Что же касается эргоспирометрии и непрямой калориметрии, то это также довольно сложные методы, которые применяют по индивидуальным показаниям.

Уменьшение просвета бронхиального дерева, проявляющееся ограничением воздушного потока - наиболее важное функциональное проявление легочных заболеваний. Общепринятые методы регистрации бронхиальной обструкции - спирометрия и пневмотахометрия с выполнением экспираторного маневра.

Они позволяют выявить рестриктивные и обструктивные расстройства вентиляции, определить диффузионную способность легких, характеризовать переход газов из альвеолярного воздуха в кровь легочных капилляров. В настоящее время исследование выполняют на приборах с программным обеспечением, проводящим автоматизированные расчеты с учетом должных величин.

Жизненная емкость легких (ЖЕЛ) слагается из дыхательного, дополнительного и резервного объемов. Дыхательный объем - воздух, вдыхаемый и выдыхаемый за один обычный (спокойный) дыхательный цикл. Резервный объем вдоха - дополнительный объем воздуха, который можно с усилием вдохнуть после обычного (спокойного) вдоха. Резервный объем выдоха - объем воздуха, который можно вывести из легких после обычного (спокойного) выдоха.

Определение ЖЕЛ имеет существенное значение в исследовании дыхательной функции. Общепринятой границей снижения ЖЕЛ является показатель ниже 80% от должной величины. Уменьшение ЖЕЛ может быть вызвано различными причинами - уменьшением объема функционирующей ткани вследствие воспаления, фиброзной трансформации, ателектаза, застоя, резекции ткани, деформации или травмы грудной клетки, спаечных процессов.

Причиной снижения ЖЕЛ могут быть и обструктивные изменения при бронхиальной астме, эмфиземе, однако более выраженное снижение ЖЕЛ характерно для ограничительных (рестриктивных) процессов. У здорового человека при исследовании ЖЕЛ грудная клетка после максимального вдоха, а затем выдоха возвращается к уровню функциональной остаточной емкости.

У больных с обструктивными нарушениями функции легких при исследовании ЖЕЛ следует медленное ступенчатое возвращение после нескольких дыхательных циклов к уровню спокойного выдоха (симптом «воздушной ловушки» ). Возникающая задержка воздуха связана со снижение эластичности легочной ткани и ухудшением бронхиальной проходимости.

Форсированная жизненная емкость (ФЖЕЛ) , или объем форсированного выдоха (ОФВ), представляет собой объем воздуха, выдыхаемый как можно резче после максимального вдоха. Величина ФЖЕЛ соответствует в норме значениям ЖЕЛ при обычном дыхании.

Основным критерием, позволяющим говорить о том, что у больного имеется хроническое ограничение воздушного потока (бронхиальная обструкция), является снижение ОФВ за первую секунду (ОФВ,) до уровня, составляющего менее 70% от должных величин. Обладая высокой воспроизводимостью при правильном выполнении маневра, этот показатель позволяет документально зарегистрировать у пациента наличие обструкции.

По степени тяжести обструктивные нарушения функции в зависимости от ОФВ, подразделяют на легкие (при показателе 70% и более от должной), средней тяжести (при 50-60% от должной) и тяжелые (менее 50% от должной). Установлено ежегодное уменьшение ОФВ, в пределах 30 мл у здоровых лиц и более 50 мл у больных хроническими обструктивными заболеваниями легких.

Проба Тиффно - рассчитывают по отношению ОФВ,/ФЖЕЛ и ОФВ/ЖЕЛ, отражающих состояние проходимости дыхательных путей в целом без указания на уровень обструкции. Наиболее чувствительным и ранним признаком оценки ограничения воздушного потока служит показатель ОФВ/ФЖЕЛ. Он является определяющим признаком хронической обструктивной болезни на всех ее стадиях. Снижение ОФВ/ФЖЕЛ ниже 70% свидетельствует об обструктивных нарушениях в бронхах.

Оценивают также среднюю объемную скорость воздушного потока на отрезке 25-75% кривой ФЖЕЛ и по степени ее наклона анализируют состояние проходимости преимущественно мелких бронхов.

Все шире в клинической практике используют тесты, выявляющие функциональные нарушения до появления клинических симптомов. Это кривая «поток - объем», альвеолоартериальный градиент по кислороду и закрытый объем.

Очень сложна ранняя диагностика преимущественного поражения мелких бронхов диаметром менее 2-3 мм, характерного для дебюта хронической обструктивной болезни легких. Оно очень долго не выявляется при спирометрии и бодиплетизмографическом измерении сопротивления дыхательных путей.

Кривая «поток-объем» форсированного выдоха позволяет выявить уровень обструкции. Диагностика уровня нарушения бронхиальной проходимости основывается на сжатии дыхательных путей при проведении форсированного выдоха. Спадению бронхов препятствует эластичность легочной ткани. При выдохе одновременно с уменьшением объема снижается эластичность ткани, что способствует коллапсу бронхов. При уменьшении эластичности спадение бронхов происходит раньше.

При анализе кривой форсированного выдоха фиксируют мгновенную скорость на уровне пика - пиковую скорость выдоха (ПСВ), а также при выдохе 75%, 50%, 25% от выдыхаемой ЖЕЛ - максимальную скорость выдоха (МСВ 75, МСВ 50, МСВ 25). Показатели ПСВ и МСВ 75 отражают проходимость крупных, а МСВ 50 и МСВ 25 - мелких бронхов.

Другой метод, который позволяет зарегистрировать поражение мелких бронхов, - определение внутригрудного компрессионного объема (Vcomp). Последний является той частью внутрилегочного объема воздуха, которая вследствие нарушения проводимости мелких бронхов во время форсированного экспираторного маневра подвергается компрессии.

Vcomp определяется как разница между изменением легочного объема и интегрированным ротовым потоком. Эти величины следует считать важным показателем проходимости дыхательных путей. Его следует использовать для ранней диагностики хронических бронхитов, в частности у курящих, не имеющих клинических признаков хронического бронхита. Изменение этих величин может указывать на поражение мелких дыхательных путей, оно также является фактором, свидетельствующим о необходимости терапевтических и профилактических мероприятий.

  • Снижение ЖЕЛ, ОФВ, MBJT в пределах 79-60% от должных величин оценивают как умеренное; 59-30% - значительное; менее 30% - резкое.
  • Снижение ПСВ, МСВ 75, МСВ 50 и МСВ 25 в пределах 59-40% от должных величин оценивают как умеренное; 39-20% - значительное; менее 20 - резкое.

Возникающее у больных хроническим бронхитом ограничение экспираторного воздушного потока приводит к замедлению выведения воздуха из легких во время выдоха, что сопровождается увеличением ФОЕ. В итоге возникает динамическая гиперинфляция легких и изменение диафрагмы в виде укорочения ее длины, уплощения формы, снижения силы сокращения. В связи с гиперинфляцией легких изменяется и эластическая отдача, возникает положительное давление в конце выдоха и повышается работа дыхательных мышц.

Изучение бронхиальной проходимости с помощью фармакологических проб значительно расширяет возможности спирографии. Определение данных легочной вентиляции до и после ингаляции бронхолитического препарата позволяет выявить скрытый бронхоспазм, дифференцировать функциональные и органические нарушения. С другой стороны, применение бронхоконстрикторов (ацетилхолин) позволяет изучить реактивность бронхиального дерева.

Для решения вопроса об обратимости обструкции применяется проба с бронхолитическими препаратами , вводимыми ингаляционно. При этом сравнивают преимущественно ОФВ. Другие показатели кривой поток-объем менее воспроизводимы, что отражается на точности результатов. Бронходилатационный ответ на препарат зависит от его фармакологической группы, пути введения и техники ингаляции.

Факторами, влияющими на бронходилатационный ответ, также являются назначаемая доза; время, прошедшее после ингаляции; бронхиальная лабильность во время исследования: состояние легочной функции; воспроизводимость сравниваемых показателей; погрешности исследования. В качестве бронходилатационных агентов при проведении тестов у взрослых рекомендуются:

  • 32-агонисты короткого действия (сальбутамол - до 800 мкг, тербуталин - до 1000 мкг) с измерением бронходилатационного ответа через 15 мин;
  • антихолинергические препараты (ипратропиума бромид до 80 мкг) с измерением бронходилатационного ответа через 30-45 мин.

Возможно проведение бронходилатационных тестов с использованием небулайзеров. При их осуществлении назначают более высокие дозы препаратов: повторные исследования следует проводить через 15 мин после ингаляции 2,5-5 мг сальбутамола или 5-10 мг тербуталина, или же через 30 мин после ингаляции 500 мкг ипратропиума бромида.

Во избежание искажения результатов и для правильного выполнения бронходилатационного теста необходимо отменить проводимую терапию в соответствии с фармакокинетическими свойствами принимаемого препарата (Р2-агонисты короткого действия - за 6 ч до начала теста, длительно действующие 32-агонисты- за 12 ч, пролонгированные теофиллины - за 24 ч).

Результат пробы оценивают по степени прироста показателя ОФВ, в процентах к исходной величине. При увеличении ОФВ, на 15% и более проба считается положительной и оценивается как обратимая. Бронхиальная обструкция считается хронической, если она регистрируется не менее трех раз в течение 1 года, несмотря на проводимую терапию.

Исследование легочной вентиляции . Вентиляция представляет собой циклический процесс вдоха и выдоха, обеспечивающий поступление воздуха из атмосферы, содержащего около 21% 02 и выведение со2 из легких.

Характер дыхания при заболеваниях легких может различаться. При обструктивных болезнях возникает более глубокое дыхание, при рестриктивном поражении - чаще поверхностное и учащенное. В первом случае из-за нарушения проходимости бронхов эффективна медленная скорость прохождения воздуха по воздухоносным путям, чтобы избежать турбулентности потока и спадения стенки мелких бронхов. Углубленное дыхание усиливает также эластическую отдачу.

При преобладании фиброзно-воспалительных изменений, сопровождающихся снижением растяжимости легочной ткани, мышечные затраты на дыхание меньше при частом и неглубоком дыхании.

Общая вентиляция , или минутный объем дыхания (МОД) , определяется спирографически при умножении дыхательного объема (ДО) на частоту дыхания. Может быть определена также и максимальная вентиляция легких (МВЛ), когда больной дышит часто и глубоко. Эта величина, также как и ОФВ, отражает вентиляционную способность легких.

При патологии и физической нагрузке величина МОД увеличивается, что связано с необходимостью увеличения потребления 02. При поражении легких снижается величина МВЛ. Разница между МВД и МОД характеризует резерв дыхания. По спирограмме можно рассчитать и количество потребляемого кислорода (в норме 250 мл/мин).

Исследование альвеолярной вентиляции . Эффективность вентиляции можно оценить по величине альвеолярной вентиляции. Альвеолярная вентиляция - объем воздуха, поступающий при дыхании в альвеолы в единицу времени, обычно рассчитывают за 1 мин. Объем альвеолярной вентиляции равен дыхательному объему с вычетом физиологически мертвого пространства.

Физиологически мертвое пространство включает анатомически мертвое пространство и объем некровоснабжаемых альвеол и объем альвеол, в которых процесс вентиляции превышает объем кровотока. Величина альвеолярной вентиляции 4-4,45 л/мин, или 60- 70% от общей вентиляции. Развивающаяся при патологическом состоянии гиповентиляция приводит к гипоксемии, гиперкапнии и дыхательному ацидозу.

Гиповентиляция - альвеолярная вентиляция, недостаточная по отношению к уровню метаболизма. Гиповентиляция ведет к повышению РС02 в альвеолярном воздухе и увеличению РС02 в артериальной крови (гиперкапния). Гиповентиляция может возникнуть при снижении ЧД и ДО, а также при увеличении мертвого пространства.

Компенсаторно развиваются сдвиги, характерные для дыхательного ацидоза, - повышаются стандартный бикарбонат (SB), буферные основания (ВВ), снижается дефицит буферных оснований (BE), который становится отрицательным. Р02 в альвеолярной крови при гиповентиляции падает.

Наиболее частые причины гиповентиляции - нарушение проходимости и увеличение мертвого пространства дыхательных путей, нарушение функции диафрагмы и межреберных мышц, нарушение центральной регуляции дыхания и периферической иннервации дыхательных мышц.

При неконтролируемой оксигенотерапии повышается РС02 в крови. В результате происходит торможение рефлекторного влияния гипоксемии на центральную регуляцию дыхания и устранение защитного действия гипервентиляции. Возникающее состояние относительной гиповентиляции способствует задержке СО2 и развитию дыхательного ацидоза. Увеличение секреции в воздухоносных путях может способствовать вентиляционной недостаточности, особенно при затруднении откашливания мокроты.

Исследование диффузии газов в легких . Измерение диффузионной способности у больных легочными заболеваниями обычно выполняется на втором этапе оценки ФВД после выполнения форсированных спирометрии или пневмотахометрии и определения структуры статических объемов.

Диффузионной способностью обозначают количество газа, проходящее в одну минуту через альвеолокапиллярную мембрану из расчета на I мм разности парциального давления этого газа на обе стороны мембраны.

Исследование диффузии применяется у больных для диагностики эмфиземы или фиброза легочной паренхимы. По способности обнаружения начальных патологических изменений легочной паренхимы данный метод сопоставим по чувствительности с КТ. Нарушением диффузии чаше сопровождаются легочные заболевания, однако может быть и изолированное нарушение, обозначаемое как «альвеолокапиллярный блок ».

При эмфиземе показатели диффузионной способности легких (DLCO) и ее отношения к альвеолярному объему (Va) снижены, главным образом, вследствие деструкции альвеолярно-капиллярной мембраны, уменьшающей эффективную площадь газообмена.

При рестриктивных легочных заболеваниях характерно значительное снижение DLCO. Отношение DLCO/Va может быть снижено в меньшей степени из-за одновременного значительного уменьшения объема легких. Снижение диффузии обычно сочетается с нарушением вентиляции и кровотока.

Диффузия может снижаться при уменьшении числа капилляров, участвующих в газообмене. С возрастом отмечается уменьшение количества легочных капилляров у больных саркоидозом, силикозом, эмфиземой, митральным стенозом, после пневмонэктомии.

Характерным для больных со сниженной диффузионной способностью является снижение Р02 при нагрузке и увеличение при вдыхании 02. На пути к гемоглобину молекулы кислорода диффундируют через альвеолы, межклеточную жидкость, эндотелий капилляров, плазму, мембрану эритроцитов, внутриэритроцитарную жидкость.

При утолщении и уплотнении этих тканей, накоплении внутри и внеклеточной жидкости процесс диффузии ухудшается. С02 обладает значительно лучшей растворимостью, чем 02, а его диффузионная способность в 20 раз выше по сравнению с последним.

Исследование диффузии проводят с помощью газов, хорошо растворяющихся в крови (С02 и 02). Величина диффузионной способности для С02 прямо пропорциональна количеству С02, перешедшему из альвеолярного газа в кровь (мл/мин) и обратно пропорциональна разнице между средним давлением С02 в альвеолах и капиллярах. В норме диффузионная способность колеблется от 10 до 30 мл/мин С02 на 1 мм рт.ст.

При проведении исследования больной вдыхает смесь с низким содержанием С02, задерживает дыхание на 10 с, в течение которых С02 диффундирует в кровь. При этом измеряется С02 в альвеолярном газе до и в конце задержки дыхания. Для расчетов определяется ФОЕ.

Исследование газов крови и кислотноосновного состояния (КОС) . Исследование газов крови и КОС артериальной крови является одним из основных методов определения состояния функции легких. Из показателей газового состава крови исследуют Ра02 и РаС02, из показателей КОС - рН и избыток оснований (BE).

Для исследования газов крови и КОС применяют микроанализаторы крови с измерением Р02 платиносеребряным электродом Кларка и РС02 - стеклянно-серебряным электродом. Исследуют артериальную и артериализованную капиллярную кровь; последняя берется из пальца или мочки уха. Кровь должна свободно изливаться и не содержать пузырьков воздуха.

За норму взята величина Р02 от 80 мм рт.ст. и выше. Уменьшение Р02 до 60 мм рт.ст. расценивают как небольшую гипоксемию до 50-60 мм рт.ст. - умеренную, ниже 50 мм рт.ст. - резкую.

Причиной гипоксемии могут быть следующие состояния: альвеолярная гиповентиляция, нарушение альвеолокапиллярной диффузии, анатомическое или паренхиматозное шунтирование, ускорение скорости кровотока в легочных капиллярах.

При гиповентиляции снижаются ДО или ЧД, увеличивается физиологически мертвое пространство. Возникающее снижение Р02, как правило, сочетается с задержкой С02. Гипоксемия, имеющая место при нарушении диффузии газов, усиливается при физической нагрузке, так как увеличивается скорость кровотока в капиллярах легких и соответственно уменьшается время контакта крови с альвеолярным газом.

Гипоксемия, вызванная нарушением диффузии, не сопровождается задержкой С02, так как скорость ее диффузии намного выше диффузии 02. Нередко низкое содержание С02 связано с сопутствующей гипервентиляцией. Гипоксемия, вызванная веноартериальными шунтами, не устраняется вдыханием высоких концентраций 02.

Альвеолоартериальная разница при этом исчезает или уменьшается при вдыхании 14% 02. Содержание 02 снижается при нагрузке. При нарушении вентиляционно-перфузионных соотношений гипоксемия исчезает при применении оксигенотерапии. При этом может возникать задержка С02 в связи с устранением гипервентиляции, которая имеет рефлекторное происхождение при наличии гипоксемии.

Вдыхание 02 в высоких концентрациях приводит к исчезновению альвеолоартериальной разницы. Гипоксемия, вызванная ускоренным прохождением крови в легочных капиллярах, имеет место при общем уменьшении кровотока в малом круге кровообращения. Показатели Р02 при этом существенно снижаются при физической нагрузке.

Чувствительность ткани к недостатку 02 определяется не только его показателями содержания в крови, но и состоянием кровотока. Возникновение повреждающего эффекта ткани, как правило, связано с сочетанием гипоксемии и одновременным изменением кровотока. При хорошем кровоснабжении ткани проявления гипоксемии менее выражены.

У больных с хронической легочной недостаточностью кровоток чаще повышен, что позволяет им сравнительно хорошо переносить гипоксемию. При остро возникающей дыхательной недостаточности и отсутствии усиления кровотока даже умеренная гипоксемия может представлять угрозу жизни больного.

Развитие гипоксемии на фоне анемии и повышенного обмена также представляет определенную опасность. Гипоксемия ухудшает кровоснабжение жизненно важных органов, течение стенокардии, инфаркта миокарда. Ткани имеют различную чувствительность к недостатку О2.

Так, скелетные мышцы способны извлекать его из артериальной крови при Р02 ниже 15-20 мм рт.ст.; клетки головного мозга и миокарда могут повреждаться, если Р02 снижается ниже 30 мм рт.ст. Неповрежденный миокард устойчив к гипоксемии, однако в ряде случаев возникают аритмии и явления снижения сократительной способности.

Определенное значение в развитии дыхательной недостаточности имеет состояние венозной крови: венозная гипоксемия и увеличение артериовенозной разницы по 02. У здоровых лиц величина Р02 в венозной крови составляет 40 мм рт.ст., артериовенозная разница - 40-55 мм рт.ст.

Повышение утилизации 02 тканями является признаком, указывающим на ухудшение условий обмена и кислородного снабжения.

Важным признаком дыхательной недостаточности является также гиперкапния . Она развивается при тяжелых легочных заболеваниях: эмфиземе, бронхиальной астме, хроническом бронхите, отеке легких, обструкции дыхательных путей, заболеваниях дыхательных мышц.

Гиперкапния может также возникнуть при поражениях ЦНС, действии на дыхательный центр наркотиков, поверхностном дыхании, когда снижается альвеолярная вентиляция нередко на фоне большой общей. Увеличению РС02 в крови способствуют неравномерная вентиляция и перфузия, увеличение физиологически мертвого пространства, интенсивная мышечная работа.

Гиперкапния возникает, когда РС02 превышает 45 мм рт.ст.; состояние гиперкапнии диагностируется при РС02 ниже 35 мм рт.ст.

Клинические признаки гиперкапнии проявляются головной болью ночью и утром, слабостью, сонливостью. При прогрессирующем увеличении РС02 появляются спутанное сознание, изменение психики, тремор. При нарастании РС02 до 70 и более мм рт.ст. возникают коматозное состояние, галлюцинации и судороги. Могут проявиться изменения со стороны глазного дна в виде полнокровия и извилистости сосудов сетчатки, кровоизлияний в сетчатку, отека соска зрительного нерва. Гиперкапния может вызвать отек мозга, артериальную гипертензию, нарушение ритма сердца вплоть до его остановки.

Накопление С02 в крови затрудняет также процесс оксигенации крови, что проявляется прогрессированием гипоксемии. Снижение рН артериальной крови ниже 7,35 расценивают как ацидоз; повышение 7,45 - как алкалоз . Дыхательный ацидоз диагностируют при повышении РС02 более 45 мм рт.ст., дыхательный алкалоз - при РС02 ниже 35 мм рт.ст.

Показателем метаболического ацидоза является снижение избытка оснований (BE), метаболического алкалоза - повышение BE.
В норме BE колеблется от -2,5 ммоль/л до +2,5. Величина рН крови зависит от соотношения гидрокарбоната (НС03) и угольной кислоты, что в норме составляет 20:1.

  • 1. Понятие о возбудимых тканях. Основные свойства возбудимых тканей. Раздражители. Классификация раздражителей.
  • 2. Особенности почечного кровотока. Нефрон: строение, функции, характеристика процессов мочеобразования и мочевыведения. Первичная и вторичная моча. Состав мочи.
  • 1. Современные представления о строении и функции клеточных мембран. Понятие о мембранном потенциале клетки. Основные положения мембранной теории возникновения мембранного потенциала. Потенциал покоя.
  • 2. Внутриплевральное давление, его значение. Эластичность легочной ткани. Факторы, определяющие эластическую тягу легких. Пневмоторакс.
  • 3. Задача. Одинаковы ли условия возникновения "теплового удара" и теплового обморока у людей?
  • 1. Характеристика изменений мембранного потенциала клетки в процессе возбуждения и торможения. Потенциал действия, его параметры и значение.
  • 2. Автоматия сердечной мышцы: понятие, современные представления о причинах, особенности. Степень автоматии различных отделов сердца. Опыт Станниуса.
  • 3. Задача. Определите, какое дыхание более эффективно:
  • 1. Общая характеристика нервных клеток: классификация, строение, функции
  • 2. Транспорт кислорода кровью. Зависимость связывания кислорода кровью от его парциального давления, напряжения углекислого газа, pH и температура крови. Эффект Бора.
  • 3. Задача. Объясните, почему охлаждение в воде 20° больше, чем при неподвижном воздухе той же температуры?
  • 1. Строение и типы нервных волокон и нервов. Основные свойства нервных волокон и нервов. Механизмы распространения возбуждения по нервным волокнам.
  • 2. Типы кровеносных сосудов. Механизмы движения крови по сосудам. Особенности движения крови по венам. Основные гемодинамические показатели движения крови по сосудам.
  • 3. Задача. Перед едой большого количества мяса один испытуемый выпил стакан воды, второй – стакан сливок, третий – стакан бульона. Как это повлияет на переваривание мяса?
  • 1. Понятие о синапсе. Строение и типы синапсов. Механизмы синаптической передачи возбуждения и торможения. Медиаторы. Рецепторы. Основные свойства синапсов. Понятие об эфаптической передаче.
  • 2. Характеристика обмена углеводов в организме.
  • 3. Задача. Если бы клеточная мембрана была абсолютно непроницаема для ионов, как бы изменилась величина потенциала покоя?
  • 1. Общие закономерности адаптации человека. Эволюция и формы адаптации. Адаптогенные факторы.
  • 2. Транспорт углекислого газа кровью
  • 2. Характеристика обмена жиров в организме.
  • 3. Задача. При обработке нерва тетродотоксином пп увеличивается, а пд не возникает. В чем причина этих различий?
  • 1. Понятие о нервном центре. Основные свойства нервных центров. Компенсация функций и пластичность нервных процессов.
  • 2. Пищеварение: понятие, физиологические основы голода и насыщения. Пищевой центр. Основные теории, объясняющие состояние голода и насыщения.
  • 1. Характеристика основных принципов координации в деятельности цнс.
  • 2. Проводимость сердечной мышцы: понятие, механизм, особенности.
  • 3. Задача. У человека установлена задержка оттока желчи из желчного пузыря. Влияет ли это на переваривание жиров?
  • 1. Функциональная организация спинного мозга. Роль спинальных центров в регуляции движений и вегетативных функций.
  • 2. Теплопродукция и теплоотдача: механизмы и факторы их определяющие. Компенсаторные изменения теплопродукции и теплоотдачи.
  • 1. Характеристика функций продолговатого, среднего, промежуточного мозга, мозжечка, их роль в моторных и вегетативных реакциях организма.
  • 2. Нейрогуморальные механизмы регуляции постоянства температуры тела
  • 1. Кора больших полушарий головного мозга как высший отдел цнс, ее значение, организация. Локализация функций в коре больших полушарий. Динамический стереотип нервной деятельности.
  • 2. Основные функции желудочно-кишечного тракта. Основные принципы регуляции процессов пищеварения. Основные эффекты нервных и гуморальных воздействий на органы пищеварения по и.П.Павлову.
  • 3. Задача. При анализе экг обследуемого было сделано заключение о нарушении процессов восстановления в миокарде желудочков. На основании каких изменений на экг было сделано такое заключение?
  • 1. Функциональная организация и функции вегетативной нервной системы (внс). Понятие о симпатическом и парасимпатическом отделах внс. Их особенности, отличия, влияние на деятельность органов.
  • 2. Понятие о железах внутренней секреции. Гормоны: понятие, общие свойства, классификация по химической структуре.
  • 3. Задача. Ребенок, который учится играть на пианино, первое время играет не только руками, но и "помогает" себе головой, ногами и даже языком. Каков механизм этого явления?
  • 1. Характеристика зрительной сенсорной системы.
  • 2. Характеристика обмена белков в организме.
  • 3. Задача. Яд, содержащийся в некоторых видах грибов, резко укорачивает абсолютно рефлекторный период сердца. Может ли отравление этими грибами привести к смерти. Почему?
  • 1. Характеристика двигательной сенсорной системы.
  • 3. Задача. Если Вы находитесь:
  • 1. Понятие о слуховой, болевой, висцеральной, тактильной, обонятельной и вкусовой сенсорных системах.
  • 2. Половые гормоны, функции в организме.
  • 1. Понятие о безусловных рефлексах, их классификация по различным показателям. Примеры простых и сложных рефлексов. Инстинкты.
  • 2. Основные этапы пищеварения в желудочно-кишечном тракте. Классификация пищеварения в зависимости от ферментов его осуществляющих; классификация в зависимости от локализации процесса.
  • 3. Задача. Под влиянием лекарственных веществ увеличилась проницаемость мембраны для ионов натрия. Как изменится мембранный потенциал и почему?
  • 1. Виды и характеристика торможения условных рефлексов.
  • 2. Основные функции печени. Пищеварительная функция печени. Роль желчи в процессе пищеварения. Желчеобразование и желчевыделение.
  • 1. Основные закономерности управления движениями. Участие различных сенсорных систем в управлении движениями. Двигательный навык: физиологическая основа, условия и фазы его образования.
  • 2. Понятие и характеристика полостного и пристеночного пищеварения. Механизмы всасывания.
  • 3. Задачи. Объясните, почему при кровопотере происходит уменьшение образования мочи?
  • 1. Типы высшей нервной деятельности и их характеристики.
  • 3. Задача. При подготовке кошки к участию в выставке некоторые хозяева содержат ее на холоде и при этом кормят жирной пищей. Зачем это делают?
  • 2. Характеристика нервной, рефлекторной и гуморальной регуляции сердечной деятельности.
  • 3. Задача. Какой тип рецепторов должно блокировать лекарственное вещество, чтобы моделировать перерезку:
  • 1. Электрическая активность сердца. Физиологические основы электрокардиографии. Электрокардиограмма. Анализ электрокардиограммы.
  • 2. Нервная и гуморальная регуляция деятельности почек.
  • 1. Основные свойства скелетной мышцы. Одиночное сокращение. Суммация сокращений и тетанус. Понятие об оптимуме и пессимуме. Парабиоз и его фазы.
  • 2. Функции гипофиза. Гормоны передней и задней доли гипофиза, их эффекты.
  • 2. Выделительные процессы: значение, органы выделения. Основные функции почек.
  • 3. Задача. Под влиянием химического фактора в мембране клетки увеличилось количество калиевых каналов, которые могут активироваться при возбуждении. Как это скажется на потенциале действия и почему?
  • 1. Понятие об утомлении. Физиологические проявления и фазы развития утомления. Основные физиологические и биохимические изменения в организме при утомлении. Понятие об "активном" отдыхе.
  • 2. Понятие о гомойотермных и пойкилотермных организмах. Значение и механизмы поддержания постоянства температуры тела. Понятие о температурном ядре и оболочке тела.
  • 1. Сравнительная характеристика особенностей гладкой, сердечной и скелетной мышц. Механизм мышечного сокращения.
  • 1. Понятие "система крови". Основные функции и состав крови. Физико - химические свойства крови. Буферные системы крови. Плазма крови и ее состав. Регуляция кроветворения.
  • 2. Значение щитовидной железы, ее гормоны. Гипер- и гипофункция. Паращитовидная железа, ее роль.
  • 3. Задача. Какой механизм доминирует как поставщик энергии:
  • 1. Эритроциты: строение, состав, функции, методы определения. Гемоглобин: структура, функции, методы определения.
  • 2. Нервная и гуморальная регуляция дыхания. Понятие о дыхательном центре. Автоматия дыхательного центра. Рефлекторные влияния от механорецепторов легких, их значение.
  • 3. Задача. Объясните, почему возбуждение м-холинорецепторов сердца приводит к угнетению деятельности этого органа, а возбуждение тех же рецепторов в гладкой мускулатуре сопровождается ее спазмом?
  • 1. Лейкоциты: типы, строение, функции, методика определения, подсчет. Лейкоцитарная формула.

2. Внутриплевральное давление, его значение. Эластичность легочной ткани. Факторы, определяющие эластическую тягу легких. Пневмоторакс.

Внутригрудное пространство, в котором находятся легкие, герметично замкнуто и с внешней средой не сообщается. Легкие окружены листками плевры: париетальный листок плотно спаян со стенками грудной клетки, диафрагмы, а висцеральный - с наружной поверхностью ткани легкого. Листки плевры увлажнены небольшим количеством серозной жидкости, играющей роль своеобразной смазки, облегчающей трение - скольжение листков при дыхательных движениях.

Внутриплевральное давление, или давление в герметично замкнутой плевральной полости между висцеральными и париетальными листками плевры, в норме является отрицательным относительно атмосферного. При открытых верхних дыхательных путях давление во всех отделах легких равно атмосферному. Перенос атмосферного воздуха в легкие происходит при появлении разницы давлений между внешней средой и альвеолами легких. При каждом вдохе объем легких увеличивается, давление заключенного в них воздуха, или внутрилегочное давление, становится ниже атмосферного, и воздух засасывается в легкие. При выдохе объем легких уменьшается, внутрилегочное давление повышает¬ся и воздух выталкивается из легких в атмосферу. Внутриплевральное давление обусловлено эластической тягой легких или стремлением легких уменьшить свой объем. При обычном спокойном дыхании Внутриплевральное давление ниже атмосферного: в инспирацию - на 6 -8 см вод. ст., а в экспирацию - на 4 - 5 см вод. ст. Прямые измерения показали, что Внутриплевральное давление в апикальных частях легких ниже, чем в прилегающих к диафрагме базальных отделах легких. В положении стоя этот градиент практически линейный и не изменяется в процессе дыхания.

Важным фактором, влияющим на эластические свойства и растяжимость легких, является поверхностное натяжение жидкости в альвеолах. Спадению альвеол препятствует антиателектатический фактор, или сурфактант, выстилающий внутреннюю поверхность альвеол, препятствующий их спадению, а также выходу жидкости на поверхность альвеол из плазмы капилляров легкого. Синтез и замена поверхностно-активного вещества - сурфактанта происходит довольно быстро, поэтому нарушение кровотока в легких, воспаление и отеки, курение, острая кислородная недостаточность (гипоксия) или избыток кислорода (гипероксия), а также различные токсические вещества, в том числе некоторые фармакологические препараты (жирорастворимые анестетики), могут снизить его запасы и увеличить поверхностное натяжение жидкости в альвеолах. Все это ведет к их ателектазу, или спадению. В профилактике и лечении ателектазов определенное значение имеют аэрозольные ингаляции лекарственных средств, содержащих фосфолипидный компонент, например лецитин, который способствует восстановлению сурфактанта.

Пневмотораксом называется поступление воздуха в межплевральное пространство, возникающее при проникающих ранениях грудной клетки, нарушающих герметичность плевральной полости. При этом легкие спадаются, так как внутриплевральное давление становится одинаковым с атмосферным. У человека левая и правая плевральные полости не сообщаются, и благодаря этому односторонний пневмоторакс, например слева, не ведет к прекращению легочного дыхания правого легкого. Двусторонний открытый пневмоторакс несовместим с жизнью.