Антагонисты рецепторов ангиотензина II. Пути образования и рецепторы

Это препараты, которые действуют на ренин-ангиотензин-альдостероновую систему. Они блокируют ангиотензиновые рецепторы-1 типа и устраняют такие эффекты ангиотензина II, как вазоконстрикция, повышение секреции альдостерона, вазопрессина, норадреналина, задержка натрия и воды, ремоделирование сосудистой стенки и миокарда, активация симпато-адреналовой системы. В результате реализуется гипотензивное, антипролиферативное, натрийуретическое действия антагонистов рецепторов ангиотензина II.

В настоящее время группа сартаны представлена четырьмя подгруппами, различающимися по химической структуре:

    бифениловые производные тетразола (лозартан, ирбесартан, кандесартан);

    небифениловые производные тетразола (телмисартан);

    небифениловые нететразолы (эпросартан);

    негетероциклические соединения (валсартан).

Лозартан и кандесартан являются пролекарствами и действуют через свои активные метаболиты, образующиеся после превращения в печени, остальные препараты являются непосредственно активными формами.

БРА различаются также по характеру связывания с рецепторами. Лозартан, валсартан, ирбесартан, кандесартан, телмисартан действуют на АТ-рецепторы как неконкурентные антагонисты АТ II, а эпросартан, напротив, является конкурентным антагонистом АТ II. Для всех БРА характерна высокая аффинность к АТ-рецептору, превышающая таковую АТ II в тысячи раз. Блокада РААС, достигаемая при помощи сартанов, является максимально полной, поскольку предотвращает воздействие на специфические рецепторы АТ II, продуцируемого не только по основному, но и по дополнительным путям. Селективное воздействие на рецепторы АТ II типа 1 сочетается с сохранением метаболизма энкефалинов, брадикинина и других биологически активных пептидов. Следует отметить, что именно с повышением активности кининовой системы связаны такие нежелательные эффекты ИАПФ, как сухой кашель и ангионевротический отек. Некоторые представители класса обладают дополнительными свойствами: агонизмом к PPARγ-рецепторам, ответственным за чувствительность периферических тканей к инсулину, урикозурическим эффектом, способностью угнетать симпатическую нервную систему. Возможно, особенности метаболизма и фармакологии объясняют различия в действии препаратов на организм, обусловливая то, что некоторые эффекты какого-либо отдельного препарата нельзя перенести на группу в целом. Однако уже сегодня на основании результатов крупных клинических исследований можно утверждать о наличии у всех сартанов общих, классовых, эффектов, главным из которых является стабильный и длительный контроль АД. Кроме того, в целом ряде исследований были получены дополнительные АД-независимые органопротективные эффекты: кардиопротекция, нефропротекция, нейропротекция и улучшение гликемического контроля .

Показания:

    период после инфаркта миокарда;

    микроальбуминурия/протеинурия;

    нефропатия при СД II;

    гипертрофия левого желудочка;

    фибрилляция предсердий;

    метаболический синдром;

    непереносимость ИАПФ.

Из всей группы БРА наиболее изученным в эксперименте и клинике является лозартан. Именно для него показан весь спектр положительных эффектов при различных патологических состояниях и именно он является эталонным препаратом, когда говорят о группе в целом.

Побочные эффекты

Блокаторы рецепторов ангиотензинаIIочень редко вызывают побочные эффекты. Все нижеперечисленные побочные эффекты отмечают лишь в единичных случаях.

    Со стороны ССС - ортостатические реакции, сердцебиение.

    Со стороны ЖКТ - диарея, диспепсия, тошнота.

    Со стороны ЦНС - головная боль, головокружение, астения, депрессии, судороги.

    Со стороны крови - нейтропения, снижение содержания гемоглобина.

    Со стороны органов дыхания - фарингит, бронхит.

    Аллергические реакции.

    Со стороны костно-мышечной системы - миалгии, боли в спине, артралгии.

    Гиперкалиемия, повышение аланинаминотрансферазы (АЛТ).

Противопоказания:

    беременность,

    гиперкалиемия,

    индивидуальная непереносимость.

    телмисартан также противопоказан больным с обструкцией желчевыводящих путей.

Лекарственное взаимодействие

Нежелательно сочетание препаратов этой группы с препаратами калия и калийсберегающими диуретиками.

Возможные комбинации

Эта группа препаратов может комбинироваться практически с любыми другими антигипертензивными препаратами, однако при двух-компонентной схеме лечения рациональной считается комбинация с диуретиками или антагонистами кальция. Причем для всех представленных на рынке сартанов существуют готовые лекарственные формы с диуретиком гидрохлортиазидом.

Ангиотензин (АТ) - это гормон из рода олигопептидов, который отвечает за сужение сосудов и подъем АД в организме. Вещество является частью ренин-ангиотензиновой системы, регулирующей вазоконстрикцию. Кроме того, олигопептид активирует синтез альдостерона - гормона надпочечников. Альдостерон также способствует повышению давления. Прекурсором ангиотензина считается белок ангиотензиноген, вырабатываемый печенью.

Ангиотензин был выделен как самостоятельное вещество и синтезирован в 30-х годах прошлого столетия в Аргентине и Швейцарии.

Коротко об ангиотензиногене

Ангиотензиноген является ярким представителем класса глобулинов и имеет в своем составе более чем 450 аминокислот. Белок вырабатывается и высвобождается в кровь и лимфу постоянно. Его уровень в течение дня может меняться.

Повышение концентрации глобулина происходит под действием глюкокортикоидов, эстрогена и тиреодных гормонов. Этим объясняется стойкое повышение АД при использовании оральных контрацептивов на основе эстрогенов.

Если давление крови понижается, и содержание Na+ резко падает, происходит рост уровня ренина и скорость выработки ангиотензиногена значительно возрастает.

Количество этого вещества в плазме здорового человека составляет примерно один ммоль/л. При развитии гипертонии ангиотензиноген в крови повышается. При этом наблюдаются периоды рениновой активности, что выражается концентрацией ангиотензина 1 (АТ 1).

Под влиянием ренина, синтезируемого в почках, из ангиотензиногена образуется АТ 1. Элемент биологически неактивен, его единственное предназначение - быть прекурсором АТ 2, который формируется в процессе отщепления двух последних атомов с C-конца молекулы неактивного гормона.

Именно ангиотензин 2 является главным гормоном РААС (ренин-ангиотензин-альдостероновой системы). Он обладает выраженной сосудосуживающей активностью, задерживает в организме соль и воду, повышает ОПСС и АД.

Можно условно выделить два главных эффекта, которые ангиотензин II оказывает на больного:

  • Пролиферативный. Проявляется увеличением объёма и массы кардиомиоцитов, соединительной ткани организма, клеток артериол, что вызывает уменьшение свободного просвета. Происходит неконтролируемое разрастание внутренней слизистой оболочки почки, увеличение количества мезангиальных клеток.
  • Гемодинамический. Эффект проявляется в быстром повышении АД и системной вазоконстрикции. Сужение диаметра кровеносных сосудов происходит на уровне почечных артериол, в результате чего увеличивается давление крови в капиллярах.

Под воздействием ангиотензина II повышается уровень альдостерона, который задерживает в организме натрий и выводит калий, что провоцирует хроническую гипокалиемию. На фоне этого процесса снижается активность мышц, формируется стойкая гипертония.

Количество АТ 2 в плазме возрастает при следующих недомоганиях:

  • рак почки, выделяющий ренин;
  • нефротический синдром;
  • почечная гипертония.

Уровень активного ангиотензина может быть и снижен. Это происходит при развитии таких заболеваний:

  • острая почечная недостаточность;
  • синдром Кона.

К снижению концентрации гормона может привести удаление почки.

Ангиотензин III и IV

В конце 70-х прошлого столетия был синтезирован ангиотензин 3. Гормон образуется при дальнейшем расщеплении эффекторного пептида до 7 аминокислот.

Ангиотензин III обладает меньшим сосудосуживающим эффектом, чем АТ 2, но при этом более активен в отношении альдостерона. Поднимает среднее АД.

Под действием ферментов аминопептидазы АТ III расщепляется до 6 аминокислот и образует ангиотензин IV. Он менее активен, чем АТ III и участвует в процессе гемостаза.

Основная функция активного олигопептида заключается в поддержке постоянного объема крови в организме. Ангиотензин влияет на процесс посредством АТ-рецепторов. Они бывают разных видов: АТ1-, АТ2-, АТ3-, АТ4-рецепторы и другие. Эффекты ангиотензина зависят от его взаимодействия с этими белками.

Наиболее близки по своему строению АТ 2 и АТ1-рецепторы, поэтому активный гормон в первую очередь соединяется с АТ1-рецепторами. В результате этой связи поднимается АД.

Если при высокой активности АТ 2 свободных АТ1-рецепторов нет, олигопептид соединяется с АТ 2-рецепторами. к которым менее предрасположен. В итоге запускаются антагонистические процессы, и АД понижается.

Ангиотензин II может влиять на организм как за счет непосредственного действия на клетки артериол, так и косвенного - через центральную или симпатическую нервную систему, гипоталамус и надпочечники. Его воздействие распространяется на концевые артерии, капилляры и венулы по всему организму.

Сердечно-сосудистая система

АТ 2 оказывает направленное вазоконстрикторное действие. Кроме сосудосуживающего эффекта, ангиотензин ii меняет силу сокращения сердца. Работая через ЦНС, гормон сдвигает симпатическую и парасимпатическую активность.

Влияние АТ 2 на организм в целом и сердечно-сосудистую систему в частности может быть преходящим или длительным.

Кратковременный эффект выражается вазоконстрикцией и стимуляцией выработки альдостерона. Продолжительное воздействие определяется тканевым АТ2, образующимся в эндотелии сосудистых областей сердечной мышцы.

Активный пептид провоцирует увеличение объёма и массы миокарда и нарушает метаболизм. Кроме того, он поднимает сопротивление в артериях, что провоцирует растяжение сосудов.

В результате воздействие ангиотензина II на сердечно-сосудистую систему развивается гипертрофия левого желудочка миокарда и стенок артерий, внутриклубочковая гипертензия.

ЦНС и головной мозг

АТ 2 оказывает опосредственное влияние на нервную систему и головной мозг через гипофиз и гипоталамус. Олигопептид стимулирует выработку АКТГ в передней части гипофиза и активирует синтез вазопрессина гипоталамусом.

Адиуретин, в свою очередь, оказывает яркое антидиуретическое действие, которое порождает:

  • Задержку воды в организме, повышая обратное всасывание жидкости из полости почечных канальцев в кровь. Это способствует увеличению объема циркулирующей в организме крови и ее разжижению.
  • Усиливает сосудосуживающий эффект ангиотензина II и катехоламинов.

АКТГ стимулирует надпочечники и повышает выработку глюкокортикоидов, из которых самым биологически активным является кортизол. Гормон, хотя он и не обладает вазоконстрикторным воздействием, усиливает сосудосуживающее влияние катехоламинов, секретируемых надпочечниками.

При резком повышении синтеза вазопрессина и АКТГ у больных появляется чувство жажды. Этому способствует и высвобождение норадреналина при прямом воздействии на симпатическую НС.

Надпочечники

Под влиянием ангиотензина в надпочечниках активируется высвобождение адольстерона. В результате происходит:

  • задержка воды в организме;
  • увеличение количества циркулирующей крови;
  • рост частоты сокращений миокарда;
  • усиление сосудосуживающего действия АТ 2.

Все эти процессы суммарно приводят к повышению АД. Эффект от чрезмерного уровня альдостерона можно наблюдать в период лютеиновой фазы месячного цикла у женщин.

Почки

В нормальных условиях ангиотензин II на функцию почек практически не влияет. Патологический процесс разворачивается на фоне чрезмерной активности РААС. Резкое уменьшение кровотока в тканях почки приводит к ишемии канальцев, затрудняет фильтрацию.

Процесс реабсорбции, вызывающий уменьшения количества мочи и выведение из организма натрия, калия и свободной жидкости, нередко приводит к обезвоживанию и появлению протеинурии.

Для кратковременного влияния АТ 2 на почки характерно повышение внутриклубочкового давления. При продолжительном воздействии развивается гипертрофия мезангиума.

К чему приводит функциональная активность ангиотензина II

Кратковременное повышение уровня гормона не оказывает на организм выраженного отрицательного воздействия. Совсем по-другому отражается на человеке длительное увеличение АТ 2. Оно нередко порождает целый ряд патологических изменений:

  • Гипертрофию миокарда, кардиосклероз, сердечную недостаточность, инфаркт. Эти недуги возникают на фоне истощения сердечной мышцы, переходящей в миокардиодистрофию.
  • Утолщение стенок сосудов и уменьшение просвета. В результате усиливается артериальное сопротивление и поднимается АД.
  • Ухудшается кровоснабжение тканей организма, развивается кислородное голодание. В первую очередь от плохого кровообращения страдают мозг, миокард и почки. Постепенно формируется дистрофия этих органов, погибшие клетки замещаются фиброзной тканью, что еще больше усугубляет симптомы недостаточности кровообращения. Ухудшается память, появляются частые головные боли.
  • Развивается инсулинорезистентность (пониженная чувствительность) к инсулину, что провоцирует обострение сахарного диабета.

Продолжительная активность олигопептидного гормона приводит к стойкому повышению АД, которое поддается только медикаментозному воздействию.

Норма ангиотензина I и II

Для определения уровня эффекторного пептида проводится анализ крови, ничем не отличающийся от обычного исследования на гормоны.

У больных артериальной гипертонией исследование выявляет активность ренина в плазме. На анализ берется кровь из вены после восьмичасового ночного сна и бессолевой диеты в течение 3 суток.

Как видно, ангиотензин II играет огромную роль в регуляции АД в организме. Следует настороженно относиться к любым изменениям уровня АТ 2 в крови. Конечно, это не означает, что при небольшом излишке гормона АД сразу поднимется до 220 мм рт. ст., а ЧСС - до 180 сокращений в минуту. По своей сути, олигопептидный гормон не может непосредственно повышать давление и провоцировать развитие гипертонии, но, тем не менее, он всегда активно участвует в формировании болезни.

В крови расщепляет другой белок ангиотензиноген (АТГ) с образованием белка ангиотензина 1 (АТ1) , состоящего из 10 аминокислот (декапептид).

Другой фермент крови – АПФ (Ангиотензин превращающий фермент, Ангиотензинконвертин энзим (АСЕ), Конвертирующий фактор Е лёгких) отщепляет от АТ1 две хвостовые аминокислоты с образованием белка из 8 аминокислот (октапептид), который называется ангиотензин 2 (АТ2) . Способностью образовывать из АТ1 ангиотензин 2 обладают и другие ферменты – химазы, катепсин G, тонин и другие сериновые протеазы, но в меньшей степени. В эпифизе головного мозга содержится большое количество химазы, которая превращает АТ1 в АТ2. В основном ангиотензин 2 образуется из ангиотензина 1 под влиянием АПФ. Образование АТ2 из АТ1с помощью химаз, катепсина G, тонина и других сериновых протеаз, называется альтернативным путём образования АТ2. АПФ присутствует в крови и во всех тканях организма, но больше всего синтезируется АПФ в лёгких. АПФ является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

Ангиотензин 2 оказывает своё действие на клетки организма через белки на поверхности клеток, которые называются ангиотензин рецепторами (АТ рецепторами). АТ-рецепторы бывают разных типов: АТ1 рецепторы, АТ2 рецепторы, АТ3 рецепторы, АТ4 рецепторы и другие. Наибольшее сродство АТ2 имеет к АТ1 рецепторам. Поэтому в первую очередь АТ2 вступает в соединение с АТ1 рецепторами. В результате этого соединения происходят процессы, которые приводят к повышению артериального давления (АД). Если уровень АТ2 высок, а свободных АТ1 рецепторов нет (не связанных с АТ2), то АТ2 соединяется с АТ2 рецепторами, к которым имеет меньшее сродство. Соединение АТ2 с АТ2 рецепторами запускает противоположные процессы, которые приводят к понижению АД.

Ангиотензин 2 (АТ2) соединяясь с АТ1 рецепторами:

  1. оказывает на сосуды очень сильное и продолжительное сосудосуживающее действие (до нескольких часов), увеличивая тем самым сопротивление сосудов, а, значит, и артериальное давление (АД). В результате соединения АТ2 с АТ1 рецепторами клеток кровеносных сосудов, запускаются химические процессы, в результате которых происходит сокращение гладкомышечных клеток средней оболочки, сосуды сужаются (происходит спазм сосудов), внутренний диаметр сосуда (просвет сосуда) уменьшается, сопротивление сосуда увеличивается. В дозе всего лишь 0,001 мг АТ2 может увеличить АД более чем на 50 мм.рт.ст.
  2. инициирует задержку натрия и воды в организме, что увеличивает объём циркулирующей крови, а, значит, и АД. Ангиотензин 2 действует на клетки клубочковой зоной надпочечников. В результате этого действия клетки клубочковой зоны надпочечников начинают синтезировать и выделять в кровь гормон альдостерон (минералокортикоид). АТ2 способствует образованию альдостерона из кортикостерона через действие на альдостеронсинтетазу. Альдостерон усиливает реабсорбцию (поглощение) натрия, а, значит, и воды из почечных канальцев в кровь. Это приводит:
    • к задержке воды в организме, а, значит, – к увеличению объёма циркулирующей крови и к обусловленному этим, повышению АД;
    • задержка в организме натрия приводит к тому, что натрий проникает в эндотелиальные клетки, покрывающие кровеносные сосуды изнутри. Увеличение концентрации натрия в клетке приводит к увеличению количества воды в клетке. Эндотелиальные клетки увеличиваются в объёме (набухают, «отекают»). Это приводит к сужению просвета сосуда. Уменьшение просвета сосуда увеличивает его сопротивление. Увеличение сопротивления сосуда увеличивает силу сердечных сокращений. Кроме того, задержка натрия – повышает чувствительность АТ1 рецепторов к АТ2. Это ускоряет и усиливает сосудосуживающее действие АТ2. Всё это суммарно приводит к повышению АД
  3. стимулирует клетки гипоталамуса на синтез и выделение в кровь антидиуретического гормона вазопрессина и клетками аденогипофиза (передней доли гипофиза) адренокортикотропного гормона (АКТГ). Вазопрессин оказывает:
    1. сосудосуживающее действие;
    2. задерживает воду в организме, усиливая в результате расширения межклеточных пор реабсорбцию (поглощение) воды из почечных канальцев в кровь. Это приводит к увеличению объёма циркулирующей крови;
    3. усиливает сосудосуживающее действие катехоламинов (адреналина, норадреналина) и ангиотензина 2.

    АКТГ стимулирует синтез клетками пучковой зоны коркового слоя надпочечников глюкокортикоидов: кортизола, кортизона, кортикостерона, 11-дезоксикортизола, 11-дегидрокортикостерона. Наибольшим биологическим действием обладает кортизол. Кортизол не обладает сосудосуживающим действием, но усиливает сосудосуживающее действие гормонов адреналина и норадреналина, синтезируемых клетками пучковой зоны коркового слоя надпочечников.

  4. является кининазой, поэтому расщепляет кинины, которые в организме оказывают сосудорасширяющее действие.

При увеличении уровня ангиотензина 2 в крови может появиться ощущение жажды, сухости во рту.

При продолжительном увеличении в крови и в тканях АТ2:

  1. гладкомышечные клетки кровеносных сосудов продолжительное время находятся в состоянии сокращения (сжатия). В результате этого развивается гипертрофия (утолщение) гладкомышечных клеток и избыточное образование коллагеновых волокон – стенки сосудов утолщаются, внутренний диаметр сосудов уменьшается. Таким образом, гипертрофия мышечного слоя кровеносных сосудов, развившаяся под продолжительным влиянием на сосуды избыточного количества АТ2 в крови, увеличивает периферическое сопротивление сосудов, а, значит, – и АД;
  2. сердце продолжительное время вынуждено сокращаться с большей силой, чтобы перекачивать больший объём крови и преодолевать большее сопротивление спазмированных сосудов. Это приводит сначала к развитию гипертрофии сердечной мышцы, к увеличению её размеров, к увеличению размеров сердца (больше левого желудочка), а затем происходит истощение клеток сердечной мышцы (миокардиоцитов), их дистрофия (миокардиодистрофия), заканчивающаяся их гибелью и замещением соединительной тканью (кардиосклероз), что в конечном итоге приводит к сердечной недостаточности;
  3. продолжительный спазм кровеносных сосудов в сочетании с гипертрофией мышечного слоя сосудов приводит к ухудшению кровоснабжения органов и тканей. От недостаточного кровоснабжения страдают в первую очередь почки, головной мозг, зрение, сердце. Недостаточное кровоснабжение почек на протяжении длительного времени приводит клетки почек к состоянию дистрофии (истощению), гибели и замещению соединительной тканью (нефросклероз, сморщивание почки), ухудшению функции почек (почечной недостаточности). Недостаточное кровоснабжение мозга приводит к ухудшению интеллектуальных возможностей, памяти, коммуникабельности, работоспособности, к эмоциональным расстройствам, расстройствам сна, головным болям, головокружениям, к ощущению шума в ушах, чувствительным расстройствам и другим расстройствам. Недостаточное кровоснабжение сердца – к ишемической болезни сердца (стенокардия, инфаркт миокарда). Недостаточное кровоснабжение сетчатки глаза – к прогрессирующему нарушению остроты зрения;
  4. уменьшается чувствительность клеток организма к инсулину (инсулинорезистентность клеток) – инициация возникновения и прогрессирования сахарного диабета 2 типа. Инсулинорезистентность приводит к увеличению инсулина в крови (гиперинсулинемия). Продолжительная гиперинсулинемия становится причиной стойкого повышения АД – артериальной гипертензии, так как приводит:
    • к задержке натрия и воды в организме – увеличение объёма циркулирующей крови, увеличение сопротивления сосудов, увеличение силы сердечных сокращений – повышение АД;
    • к гипертрофии гладкомышечных клеток сосудов – – повышение АД;
    • к повышенному содержанию ионов кальция внутри клетки – – повышение АД;
    • к повышению тонуса – , увеличение объёма циркулирующей крови, увеличение силы сердечных сокращений – повышение АД;

Ангиотензин 2 подвергается дальнейшему ферментативному разщеплению глютамил аминопептидазой с образованием Ангиотензина 3, состоящего из 7 аминокислот. У ангиотензина 3 сосудосуживающее действие слабее, чем у ангиотензина 2, а способность стимулировать синтез альдостерона – сильнее. Ангиотензин 3 ферментом аргинин аминопептидазой расщеплятся до ангиотензина 4, состоящего из 6 аминокислот.

Роль гормона ангиотензина для работы сердечно-сосудистой системы неоднозначна и во многом зависит от рецепторов, с которыми он взаимодействует. Наиболее известно его влияние на рецепторы первого типа, которые вызывают сужение сосудов, возрастание кровяного давления, способствуют синтезу гормона альдостерона, что влияет на количество солей в крови и объем циркулирующей крови.

Образование ангиотензина (ангиотонин, гипертензин) происходит путем сложных преобразований. Предшественником гормона является белок ангиотензиноген, большую часть которого вырабатывает печень. Белок этот относится к серпинам, большинство которых тормозят (ингибируют) ферменты, расщепляющие пептидную связь между аминокислотами в белках. Но в отличие от многих из них, ангиотензиноген на другие белки такого влияния не имеет.

Выработка белка повышается под воздействием гормонов надпочечников (прежде всего, кортикостероидов), эстрогенов, тиреоидных гормонов щитовидной железы, а также ангиотензина II, в который этот белок впоследствии преобразуется. Делает ангиотензиноген это не сразу: сначала под воздействием ренина, которые вырабатывают артериолы почечных клубочков в ответ на понижение внутрипочечного давления, ангиотензиноген трансформируется в первую, неактивную форму гормона.

Затем на него оказывает влияние ангиотензин превращающий фермент (АПФ), что образуется в лёгких и отщепляет от него две последние аминокислоты. В результате получается состоящий из восьми аминокислот активный октапептид, известный как ангиотонин II, который при взаимодействии с рецепторами оказывает влияние на сердечно-сосудистую, нервную системы, надпочечники и почки.

При этом гипертензин обладает не только сосудосуживающим действием и стимулирует выработку альдостерона, но и в больших количествах в одном из отделов головного мозга, гипоталамусе, повышает синтез вазопрессина, который влияет на выведение воды почками, способствует появлению чувства жажды.

Рецепторы гормона

В настоящий момент обнаружено несколько типов рецепторов ангиотонина II. Лучше всего изучены рецепторы подтипа АТ1 и АТ2. Большинство воздействий на организм как позитивных, так и негативных, происходит при взаимодействии гормона с рецепторами первого подтипа. Находятся они во многих тканях, больше всего – в гладких мышцах сердца, сосудов, в почках.

Влияют на сужение мелких артерий почечных клубочков, вызывая возрастание давления в них, способствуют реабсорбации (обратному всасыванию) натрия в почечных канальцах. От них во многом зависит синтез вазопрессина, альдостерона, эндотелина-1, работа адреналина и норадреналина, они же принимают участие в освобождение ренина.

К негативным воздействиям относят:

  • угнетение апоптоза – апоптозом называют регулируемый процесс, во время которого организм избавляется от ненужных или поврежденных клеток, в том числе от злокачественных. Ангиотонин при влиянии на рецепторы первого типа способен притормозить их распад в клетках аорты и коронарных сосудов;
  • увеличение количества «плохого холестерина», который способен спровоцировать атеросклероз;
  • стимуляция разрастания гладкомышечных стенок сосудов;
  • увеличение риска образования тромбов, которые замедляют ток крови по сосудам;
  • гиперплазия интимы – утолщение внутренней оболочки кровеносных сосудов;
  • активизация процессов ремоделирования сердца и сосудов, которая выражается в способности органа изменять свою структуру из-за патологических процессов, является одним из факторов артериальной гипертензии.


Так, при слишком активной деятельности ренин-ангиотензиновой системы, которая регулирует давление и объем крови в организме, рецепторы АТ1 оказывают прямое и косвенное воздействие на повышение артериального давления. Также они негативно влияют на сердечно-сосудистую систему, вызывая утолщение стенок артерий, увеличение миокарда и другие недуги.

Рецепторы второго подтипа также распространены по всему организму, больше всего находятся в клетках плода, после рождения их количество начинает уменьшаться. Некоторые исследования позволили предположить, что они оказывают существенное влияние на развитие и рост клеток эмбриона, формируют исследовательское поведение.

Доказано, что число рецепторов второго подтипа может возрастать при повреждении сосудов и других тканей, сердечной недостаточности, инфаркте. Это позволило выдвинуть предположение, что АТ2 участвуют в регенерации клеток и, в отличие от АТ1, способствуют апоптозу (гибели поврежденных клеток).

Исходя из этого, исследователи выдвинули предположение, что эффекты, которые оказывает ангиотонин через рецепторы второго подтипа, прямо противоположны его воздействию на организм через АТ1-рецепторы. В результате стимуляции АТ2 происходит вазодилатация (расширение просвета артерий и других кровеносных сосудов), тормозится увеличение мышечных стенок сердца. Воздействие этих рецепторов на организм находится лишь на стадии изучения, поэтому их влияние мало изучено.


Также почти неизвестна реакция организма на рецепторы третьего типа, которые были обнаружены на стенках нейронов, а также на АТ4, что расположены на эндотелиальных клетках, и отвечают за расширение и восстановление сети кровеносных сосудов, рост тканей и заживление при повреждениях. Также рецепторы четвертого подвида были найдены на стенках нейронов, и согласно предположениям отвечают за познавательные функции.

Разработки ученых в медикаментозной сфере

В результате многолетних исследований ренин-ангиотензиновой системы было создано немало лекарств, действие которых направлено на целенаправленное воздействие на отдельные части этой системы. Особое внимание ученые уделили негативному воздействию на организм рецепторов первого подтипа, что оказывают большое влияние на развитие сердечно-сосудистых осложнений, и поставили задачу разработать лекарства, направленные на блокирование этих рецепторов. Поскольку стало очевидно, что таким образом можно лечить артериальную гипертонию и предупредить сердечно-сосудистые осложнения.

В ходе разработок стало очевидно, что блокаторы рецепторов ангиотензина более эффективны, чем ингибиторы ангиотензин превращающего фермента, поскольку действуют сразу в нескольких направлениях и способны просачиваться сквозь гематоэнцефалический барьер.

Он разделяет центрально-нервную и кровеносную системы, защищая нервную ткань от находящихся в крови патогенов, токсинов, а также клеток иммунной системы, что из-за сбоев идентифицируют мозг как инородную ткань. Также он является барьером для некоторых лекарств, направленных на терапию нервной системы (зато пропускает питательные и биоактивные элементы).

Блокаторы рецепторов ангиотензина, проникнув сквозь барьер, притормаживают медиаторные процессы, что происходят в симпатической нервной системе. В результате угнетается высвобождение норадреналина и уменьшается стимуляция адреналиновых рецепторов, что находятся в гладких мышцах сосудов. Это приводит к возрастанию просвета кровеносных сосудов.

При этом каждый препарат обладает своими особенностями, например, такое влияние на организм особенно сильно выражено у эпроссартана, тогда как воздействие других блокаторов на симпатическую нервную систему противоречивы.


Таким методом лекарства блокируют развитие эффектов, которые гормон оказывает на организм через рецепторы первого подтипа, предупреждая негативное воздействие ангиотонина на сосудистый тонус, способствуя обратному развитию гипертрофии левого желудочка и уменьшая слишком высокое артериальное давление. Регулярный продолжительный прием ингибиторов вызывает снижение гипертрофии кардиомиоцитов, разрастания гладкомышечных клеток сосудов, мезангиальных клеток и т.д.

Также необходимо заметить, что все антагонисты рецепторов ангиотензина характеризуются избирательным действием, которое направленно именно на то, чтобы блокировать рецепторы первого подтипа: на них они воздействуют в тысячи раз сильнее, чем на АТ2. Причем разница во влиянии для лозартана превышает тысячу раз, валсартана – двадцать тысяч раз.

При повышенной концентрации ангиотензина, что сопровождается блокадой АТ1-рецепторов, начинают проявляться защитные свойства гормона. Выражаются они в стимуляции рецепторов второго подтипа, что приводит к увеличению просвета кровеносных сосудов, замедление разрастания клеток и др.

Также при повышенном количестве ангиотензинов первого и второго типа образуется ангиотонин-(1-7), который также обладает сосудорасширяющим и натрийуретическим действиями. На организм он влияет через неидентифицированные АТх рецепторы.

Виды лекарств

Антагонисты рецепторов ангиотензина принято делить по химическому составу, фармакологическим характеристикам, способу связывания с рецепторами. Если говорить о химической структуре, ингибиторы принято делить на следующие виды:

  • бифениловые производные тетразола (лозартан);
  • бифениловые нететразоловые соединения (телмисартан);
  • небифениловые нететразоловые соединения (эпросартан).

Что касается фармакологической активности, то ингибиторы могут являть собой активные лекарственные формы, которые характеризуются фармакологической активностью (валсартан). Или же быть пролекарствами, которые активизируются после преобразования в печени (кандесартана цилексетил). Некоторые ингибиторы содержат активные метаболиты (продукты обмена веществ), присутствие которых характеризуется более сильным и длительным воздействием на организм.


По механизму связывания препараты делят на такие, что обратимо связываются с рецепторами (лозартан, эпросартан), то есть при определенных ситуациях, например, когда происходит возрастание количества ангитензина в ответ на снижение циркулирующей крови, ингибиторы могут быть вытесненными из мест связывания. Есть и такие лекарства, что связываются с рецепторами необратимо.

Особенности приема препаратов

Больному назначают прием ингибиторов рецепторов ангиотензина при наличии артериальной гипертензии как при слабой, так и тяжелой форме недуга. Повысить эффективность блокаторов способно их сочетание с тиазидными диуретиками, поэтому уже разработаны препараты, что содержат в себе комбинацию этих лекарств.

Антогонисты рецепторов не являются препаратами быстрого действия, на организм они воздействуют плавно, постепенно, эффект держится около суток. При регулярной терапии выраженный лечебный эффект можно увидеть через две, и даже шесть недель после начала терапии. Принимать их можно вне зависимости от приема пищи, для эффективного лечения достаточно раз в день.

Препараты хорошо воздействуют на больных вне зависимости от пола и возраста, в т. ч. и на пожилых пациентов. Организм хорошо переносит все виды этих лекарств, что дает возможность использовать их для лечения больных с уже обнаруженной сердечно-сосудистой патологией.

Блокаторы рецепторов АТ1 имеют противопоказания и предостережения. Они запрещены людям с индивидуальной непереносимостью компонентов лекарства, беременным женщинам и в период лактации: они могут вызвать патологические изменения в организме малыша, результатом чего является его смерть в утробе матери или после рождения (это было установлено в ходе экспериментов над животными). Также не рекомендуют применять эти лекарства для лечения детей: насколько препараты для них безопасны, на сегодняшний день не определено.

С осторожностью врачи назначают ингибиторы людям, которые имеют пониженный объем циркулирующей крови, или анализы показали пониженное количество натрия в крови. Это обычно бывает при терапии диуретиками, если человек находится на бессолевой диете, при диарее. С оглядкой нужно применять препарат при аортальном или митральном стенозе, обструктивной гипертрофической кардиомиопатии.

Нежелателен прием лекарства людям, что находятся на гемодиализе (метод внепочечного очищения крови при почечной недостаточности). Если лечение назначают на фоне почечного заболевания, необходим постоянный контроль концентрации калия и крептинина сыворотки. Неэффективен препарат, если анализы показали повышенное количество альдостерона в крови.

Смоленская государственная медицинская академия

Кафедра клинической фармакологии

КЛИНИЧЕСКАЯ ФАРМАКОЛОГИЯ ИНГИБИТОРОВ АНГИОТЕНЗИН-ПРЕВРАЩАЮЩЕГО ФЕРМЕНТА

В патогенезе артериальной гипертензии и сердечной недостаточности важная роль принадлежит активации ренин-ангиотензин-альдостероновой системы (РААС), которая запускает и в дальнейшем поддерживает порочный круг при этих состояниях.

Функционирование РААС

Основная роль РААС в процессе эволюции заключается в поддержании функции кровообращения в условиях острой кровопотери и дефицита натрия, то есть при недозаполненности сосудистого русла.

Если происходит потеря натрия и воды (диуретики, кровопотеря) или уменьшается кровоснабжение почек, в почках начинается повышенная выработка ренина. Ренин способствует превращению ангиотензиногена, образующегося в печени, в физиологически неактивный ангиотензин I. Ангиотензин под влиянием ангиотензин-превращающего фермента (АПФ) превращается в активное соединение -ангиотензин II.

Помимо циркулирующих в крови, компоненты РААС обнаружены в почках, легких, сердце, гладкой мускулатуре сосудов, головном мозге, печени и других органах. Эти системы способны синтезировать ангиотензин II в тканях и без поступления ренина извне. Тканевые РАС являются важным фактором регуляции кровоснабжения и функции органов, где они располагаются.

Биологическая роль ангиотензина II

Ангиотензин II обладает широким спектром биологической активности:

1. Стимулирует специфические ангиотензиновые рецепторы кровеносных сосудов, что оказывает прямое мощное сосудосуживающее влияние на артериолы, повышая тем самым общее периферическое сопротивление сосудов и АД: тонус вен увеличивается в меньшей степени.

2. Является физиологическим фактором роста. Повышает клеточную.пролиферацию, увеличивая размер клеток и их число. В результате этого происходит, с одной стороны, утолщение гладкомышечного слоя сосудов и уменьшение их просвета, с другой, развивается гипертрофия миокарда левого желудочка.

3. Стимулирует выработку в коре надпочечников минералокортикоидного гормона альдостерона. Альдостерон увеличивает реабсорбцию натрия в канальцах.почек, в результате чего повышается осмотическое давление плазмы крови. Это, в свою очередь, приводит к увеличению выработки антидиуретического гормона (АДГ, вазопрессин) и задержке в организме воды. В результате повышается объем циркулирующей крови (ОЦК) и нагрузка на миокард, а также увеличивается отечность сосудистой стенки, что делает ее более чувствительной к сосудосуживающим влияниям.

4. Увеличивает активность симпатоадреналовой системы: стимулирует выработку в мозговом слое надпочечников норад-реналина, который сам по себе приводит к увеличению спазма сосудов и стимуляции роста мышечных клеток, а также усиливает его действие на уровне постганглионарных нейронов и увеличивает поток адренергических импульсов из специфических центров головного мозга, ответственных за поддержание АД.