Второе начало термодинамики. Невозможность создания вечных двигателей

Второе начало термодинамики – теплота не может самопроизвольно переходить от тела менее нагретого к телу более нагретому. Под теплотой понимается внутренняя энергия тела.

Рассмотрим систему, способную контактировать с двумя тепловыми резервуарами. Температуры резервуаров (нагреватель) и (холодильник) .. В первоначальном состоянии (поз. 1) температура системы . Приведем ее в тепловой контакт с нагревателем и, квазистатически уменьшив давление, увеличим объем.

Система перешла в состояние с той же температурой , но с большим объемом и меньшим давлением (поз. 2). При этом системой была выполнена работа , а нагреватель передал ей количество теплоты . Далее уберем нагреватель и квазистатически по адиабате переведем систему в состояние с температурой (поз. 3). При этом система выполнит работу . Затем приведем систему в контакт с холодильником и вказистатически уменьшим объем системы. Количество тепла , которое при этом выделит система, поглотится холодильником – ее температура останется прежней.Над системой была выполнена работа (или система выполнила отрицательную работу– ). Состояние системы (поз. 4) выбирается таким, чтобы можно было по адиабате вернуть систему в исходное состояние (поз 1). При этом система выполнит отрицательную работу Т.к. система вернулась в исходное состояние, то внутренняя энергия после цикла осталась прежней, но при этом системой была выполнена работа . Из этого следует, что изменения энергии при выполнении работы компенсировались нагревателем и холодильником. Значит , – количество теплоты, которая пошла на выполнение работы .Коэффициент полезного действия (КПД) определяется по формуле:

.


Отсюда следует, что .


Теорема Карно
гласит, что коэффициент полезного действия тепловой машины, работающей по циклу Карно, зависит только от температур и нагревателя и холодильника, но не зависит от устройства машины, а также от вида рабочего вещества.

Вторая теорема Карно гласит – коэффициент полезного действия всякой тепловой машины не может превосходить коэффициент полезного действия идеальной машины, работающей по циклу Карно с теми же самыми температурами нагревателя и холодильника.

Неравенство Клаузиуса:



Из него видно, что количество теплоты, которое получила система при круговом процессе, отнесенное к абсолютной температуре, при которой происходил процесс, есть величина неположительная. Если процесс квазистатический, то неравенство переходит в равенство:

Это значит, что приведенное количество теплоты, получаемое системой при любом квазистатическом круговом процессе, равно нулю .

– элементарное приведенное количество теплоты, получаемое в бесконечно

малом процессе.

– элементарное приведенное количество теплоты, получаемое в конечном


процессе.

Энтропия системы есть функция ее состояния, определенная с точностью до произвольной постоянной.

Разность энтропий в двух равновесных состояниях и , по определению, равна приведенному количеству теплоты, которое надо сообщить системе, чтобы перевести ее из состояния в состояние по любому квазистатическому пути.

Энтропия выражается функцией:

.


Предположим, что система переходит из равновесного состояния в равновесное состояние по пути , и переход – необратимый (штрихованная). Систему в квазистатически можно вернуть в исходное состояние по другому пути . Опираясь на неравенство Клаузиуса можно написать:

2.3.1. Обратимые и круговые процессы

Обратимым процессом называется такой процесс, который может быть проведен в обратном направлении таким образом, что система будет проходить через те же термодинамические состояния, что и при прямом процессе, но в обратной последовательности. Обратимым может быть только равновесный процесс.

Обратимый процесс обладает следующим свойством: если при прямом ходе на каком-то элементарном участке система получает тепло dQ и совершает работу dA, то при обратном ходе на том же участке система отдает тепло dQ" = dQ и над ней совершается работа dA" = dA. По этой причине после протекания обратимого процесса в одном, а затем в обратном направлении и возвращения системы в первоначальное состояние в окружающих систему телах не должно произойти никаких изменений.

Круговым процессом (циклом) называется такой процесс, при котором система после ряда изменений возвращается в исходное состояние. На графике цикл изображается замкнутой кривой (Рис. 2.3.1).

Рис. 2.3.1. Круговой термодинамический процесс


Работа, совершаемая при круговом процессе, численно равна площади, охватываемой кривой. Действительно, работа на участке 1-2 положительна и численно равна площади, отмеченной наклоненной вправо штриховкой. Работа на участке 2-1 отрицательна и численно равна площади, отмеченной наклоненной влево штриховкой. Следовательно, работа за цикл численно равна площади, охватываемой кривой.

После совершения цикла система возвращается в исходное состояние.

2.3.2. Коэффициент полезного
действия тепловой машины

Всякий двигатель представляет собой систему, совершающую многократно некоторый круговой процесс (цикл). Пусть в ходе цикла рабочее вещество (например, газ) сначала расширяется до объема V 2 , а затем снова сжимается до первоначального объема V 1 (Рис. 2.3.2).


Рис. 2.3.2. К расчету кпд тепловой машины


Чтобы работа за цикл была больше нуля, давление (а, следовательно, и температура) в процессе расширения должно быть больше, чем при сжатии. Для этого рабочему веществу нужно в ходе расширения сообщать, а в ходе сжатия отнимать от него тепло.

Напишем первое начало термодинамики для обеих частей цикла. При расширении внутренняя энергия изменяется от значения U 1 до U 2 , при этом система получает тепло Q 1 и совершает работу А 1 . Поэтому выполняется:

При сжатии система совершает работу А 2 и отдает тепло Q 2 , что равносильно получению тепла –Q 2 . Следовательно,

Складывая уравнения (2.3.1) и (2.3.2), получаем:

Поскольку А 1 + А 2 есть полная работа А, совершаемая системой за цикл, можно записать:

Периодически действующий двигатель, совершающий работу за счет получаемого извне тепла, называется тепловой машиной .

Первое начало термодинамики иногда формулируют так: периодически действующий вечный двигатель (перпетуум мобиле) первого рода, совершающий работу в большем количестве, чем он получает энергии извне, невозможен .

Как следует из (2.3.4), не все получаемое извне тепло Q 1 используется для получения полезной работы. Для того, чтобы двигатель работал циклами, часть тепла Q 2 должна быть возвращена во внешнюю среду и, следовательно, не используется по назначению. Очевидно, что чем полнее тепловая машина превращает получаемое извне тепло Q 1 в полезную работу А, тем эта машина выгоднее. Поэтому тепловую машину принято характеризовать коэффициентом полезного действия (КПД), который определяется как отношение совершаемой за цикл работы к получаемому за цикл количеству тепла Q 1:

Из определения КПД следует, что он не может быть больше единицы.

2.3.3. Второе начало термодинамики

Второе начало термодинамики, как и первое, может быть сформулировано несколькими способами. В наиболее очевидной формулировке второе начало гласит, что:

невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому. Более строго, невозможны такие процессы, единственным конечным результатом которых был бы переход тепла от тела, менее нагретого, к телу, более нагретому.

Еще одна формулировка: невозможны такие процессы, единственным конечным результатом которых явилось бы отнятие от некоторого тела определенного количества тепла и превращение этого тепла в работу полностью.

Работа может быть полностью превращена в тепло, например, посредством трения, обратное неверно.

2.3.4. Цикл Карно

Предположим, что какое-либо тело может вступать в теплообмен с двумя тепловыми резервуарами, имеющими температуры Т 1 и Т 2 и обладающими бесконечно большой теплоемкостью. Это означает, что получение или отдача этими резервуарами конечного количества тепла не изменяет их температуры. Выясним, какой обратимый цикл может совершать тело в таких условиях.

Рассматриваемый цикл может состоять как из процессов, в ходе которых тело обменивается теплом с резервуарами, так и из процессов, не сопровождающихся теплообменом с окружающей средой, т.е. происходящих адиабатически.

Процесс, сопровождающийся обменом тепла с резервуарами, может быть обратимым только в том случае, если в ходе этого процесса температура тела будет равна температуре соответствующего резервуара. Это - изотермический процесс, протекающий при температуре резервуара.

Обратимый цикл, совершаемый телом (или системой), вступающим в теплообмен с двумя тепловыми резервуарами бесконечно большой емкости, будет состоять из двух изотер (при температурах резервуаров) и двух адиабат. Это - цикл Карно .

Рассмотрим, как может быть осуществлен цикл Карно с газом в качестве рабочего вещества. Поместим газ в цилиндр, закрытый плотно пригнанным поршнем. Пусть стенки и поршень сделаны из непроводящих тепло материалов, дно цилиндра, напротив, изготовлено из материала с высокой теплопроводностью. Теплоемкость цилиндра и поршня считается бесконечно малой.

Пусть первоначально поршень занимает положение, отвечающее объему V 1 и температуре газа Т 1 . Поставим цилиндр на резервуар, имеющий температуру Т 1 , и предоставим газу возможность очень медленно расширяться до объема V 2 . При этом газ получит от резервуара тепло Q 1 (Рис. 2.3.3).


Рис. 2.3.3. Тепловая машина, работающая по циклу Карно

Затем снимем цилиндр с резервуара, закроем дно теплоизолирующей крышкой и позволим газу расширяться адиабатически до тех пор, пока его температура не упадет до значения Т 2 . Объем газа в результате станет равным V 3 . Убрав теплоизолирующую крышку, поставим цилиндр на резервуар, имеющий температуру Т 2 и сожмем газ изотермически до такого объема V 4 , чтобы при последующем адиабатическом сжатии при достижении температуры Т 1 объем получил значение V 1 (иначе цикл не замкнется). Наконец, снимем цилиндр с резервуара, закроем дно теплоизолирующей крышкой и, сжимая газ адиабатически, приведем его в первоначальное состояние (температура Т 1 , объем V 1).

Если газ идеальный, соответствующий цикл на (р-V) диаграмме имеет вид, показанный на Рис. 2.3.4.


Рис. 2.3.4. (р-V) диаграмма цикла Карно

2.3.5. КПД цикла Карно для идеального газа

Рассмотрим цикл Карно для идеального газа. КПД тепловой машины равен:

где Q 1 - тепло, получаемое за цикл от нагревателя, Q 2 - тепло, отдаваемое за цикл холодильнику.

При изотермическом процессе внутренняя энергия идеального газа остается постоянной. Поэтому количество полученного газом тепла Q 1 равно работе А 12 , совершаемой газом при переходе из состояния 1 в состояние 2 (Рис. 2.3.4). Эту работу можно рассчитать так:

Используя уравнение Клапейрона-Менделеева, получим:

где m - масса идеального газа а тепловой машине.

Количество отдаваемого холодильнику тепла Q 2 равно работе А 34 , затрачиваемой на сжатие газа при переводе его из состояния 3 в состояние 4. Эта работа равна:

Для того, чтобы цикл был замкнутым, нужно, чтобы состояния 4 и 1 лежали на одной и той же адиабате. Отсюда с помощью (2.1.68) можно получить:

Аналогично, поскольку состояния 2 и 3 лежат на одной и той же адиабате, выполняется:

Деля (2.3.11) на (2.3.10), приходим к условию замкнутости цикла:

Окончательно, учитывая условие (2.3.12), для КПД тепловой машины, работающей по циклу Карно для идеального газа, получаем:

Следовательно, КПД цикла Карно для идеального газа оказывается зависящим только от температуры нагревателя и холодильника.

Даже для наилучшей тепловой машины, работающей по циклу Карно, КПД всегда значительно меньше единицы. Если, например, температура нагревателя Т 1 = 373К (температура кипения воды), а температура холодильника Т 2 = 293К (комнатная температура), то η = 22%. И этот КПД является верхним (и недостижимым) пределом. В реальных машинах, например, на паровозах, редко превосходил 10%.

2.3.6. Энтропия

Обратим внимание на те изменения, которые претерпело рабочее тело в процессе кругового цикла Карно. Из исходного состояния 1 (давление р 1 , температура Т 1) рабочее тело путем последовательного проведения изотермического и адиабатического расширений перешло в состояние 3, когда оно приняло температуру холодильника Т 2 . Это изменение состояния произошло за счет тепла Q 1 , доставленного рабочему телу нагревателем. Обратный переход рабочего тела из состояния 3 в исходное состояние 1 был осуществлен двумя последовательно проведенными изотермическим и адиабатическим сжатиями тела. Выделившееся при этом возвращении в исходное состояние количество тепла равно Q 2 , причем Q 2 < Q 1 . Таким образом, оказывается, что обратимый переход одного и того же тела из состояния 1 → 3 и обратный переход 3 → 1 сопровождаются неодинаковыми количествами поглощенного и выделенного тепла. Очевидно, что это связано с тем, что оба перехода были проведены различными путями: в одном случае (1 → 3) процесс расширения происходил при давлении более высоком, чем процессы сжатия в другом (3 → 1). Ясно, что если бы мы осуществили переход 3 → 1 тем же путем, что и прямой, т.е. по кривой 3 → 2 → 1, а не по кривой 3 → 4 → 1 (), то количество тепла, затраченного при прямом переходе, в точности равнялось бы количеству тепла, выделившемуся при обратном переходе.

Отсюда следует важный вывод: количество тепла, которое должно быть доставлено телу или отнято у него при переходе из одного состояния в другое, не определяется однозначно начальным и конечным состояниями, но существенно зависит от способа осуществления этого перехода.

Однако, хотя сами количества тепла - Q 1 , доставленного рабочему телу нагревателем при температуре Т 1 , и Q 2 , переданное рабочим телом холодильнику при температуре Т 2 , не равны между собой, то, как следует из сопоставления формул (), () и (), отношения этих теплот к тем температурам, при которых они были поглощены или отданы, численно равны между собой (но имеют противоположные знаки):

Отношение называют, следуя Лоренцу, приведенной теплотой . Из (2.3.15) следует, что приведенные теплоты, полученные и отданные рабочим телом при круговом процессе, равны между собой.

Обобщим данный результат. Любое изменение состояния тела или системы тел в общем случае можно представить как результат бесконечно большого числа бесконечно малых изменений. При каждом таком бесконечно малом изменении система либо поглощает, либо выделяет бесконечно малое количество тепла dQ (если процесс не адиабатический). Пусть dQ > 0, когда система поглощает тепло.где dQ - количество тепла, отнятое от тела М при температуре Т, dQ" - количество тепла, переданное резервуару с температурой Т 1 .

Если Т 1 < T, резервуар играет роль холодильника, а тело М - нагревателя, и наоборот.

После того, как телом М будет завершен круговой процесс, общее количествo теплоты, потерянное телом, как следует из (2.3.17), должно быть равно величине . Поскольку теплоемкость резервуара велика и его температура остается постоянной, эта величина будет равна: .

Процесс, совершенный телом, - круговой. Поэтому оно в конце концов не испытало никаких изменений. Если бы интеграл (2.3.16) оказался положительным, то это означало бы, что потерянное телом количество тепла целиком превратилось в работу, тогда как тело М своего состояния не изменило. Однако это противоречит второму началу термодинамики. Значит, предположение о том, что , несостоятельно. Аналогично можно показать, что указанный интеграл не может быть отрицательным. Но если он не может быть ни положительным, ни отрицательным, то это означает, что для обратимых круговых процессов выполняется:

Энтропия изолированной системы может только возрастать (если в системе протекает необратимый процесс), или оставаться постоянной в случае обратимого процесса.

Нернстом доказана теорема (иногда называемая третьим началом термодинамики), согласно которой при стремлении абсолютной температуры к нулю энтропия любого тела также стремится к нулю:

Тогда энтропию состояния тела при температуре Т можно вычислить так.

Второе начало термодинамики. Принцип работы тепловой машины. Цикл Карно. КПД теплового двигателя.

Второе начало термодинамики (ВНТ)

Выражая всœеобщий закон сохранения и превращения энергии, первое начало термодинамики (ПНТ) не позволяет определить направление протекания процессов

ВНТ справедливо только по отношению к термодинамическим системам. Существует несколько эквивалентных формулировок ВНТ:

1. Невозможен процесс, единственным результатом которого является передача теплоты от холодного тела к горячему (формулировка Клаузиуса).

2. Невозможен процесс, единственным результатом которого является совершение работы за счёт охлаждения одного тела (формулировка Томсон).

3. Энтропия изолированной системы не может убывать при любых происходящих в ней процессах, ᴛ.ᴇ. dS³0, где знак равенства относится к обратимым процессам, а знак больше – к необратимым процессам.(Формулировка Клаузиуса)

Формула Больцмана (31) S=klnW позволяет дать статистическое истолкование третьей формулировки ВНТ: Термодинамическая вероятность W состояния изолированной системы при всœех происходящих в ней процессах не может убывать.

Оно выражает необходимые закономерности хаотического движения большого числа частиц, входящих в состав изолированной системы.

Цикл Карно

Цикл Карно изображен, где изотермическое расширение и сжатие заданы соответственно кривыми 1-2 и 3-4, адиабатическое расширение и сжатие – кривыми 2-3 и 4-1.

Принцип работы тепловой машины.

Тепловой машиной принято называть циклическое устройство, превращающее теплоту, выделœенную при сжигании топлива, в работу.

Элементы тепловой машины:

Нагреватель

Рабочее вещество

Холодильник

На примере цилиндра автомобиля - происходит нагревание воздуха, повышение температуры воздуха, это вызывает поступательное движение поршня. Движущийся поршень приводит во вращение коленчатый вал, а далее через систему зубчатых передач вращательное движение передаётся колёсам.

КПД-Это работы машины к затраченной энергии.

Второе начало (закон) термодинамики. Энтропия. Цикл Карно.

Круговые процессы (циклы)

Первый закон термодинамики утверждает, что теплота может превращаться в работу, а работа в теплоту и не устанавливает условий, при которых возможны эти превращения.

Превращение работы в теплоту происходит всегда полностью и безусловно. Обратный процесс превращения теплоты в работу при непрерывном её переходе возможен только при определенных условиях и не полностью. Теплота сам собой может переходить только от более нагретых тел к холодным. Переход теплоты от холодных тел к нагретым сам собой не происходит. Для этого нужно затратить дополнительную энергию.

Таким образом, для полного анализа явления и процессов необходимо иметь кроме первого закона термодинамики еще дополнительную закономерность. Этим законом является второй закон термодинамики. Он устанавливает, возможен или невозможен тот или иной процесс, в каком направлении протекает процесс, когда достигается термодинамическое равновесие и при каких условиях можно получить максимальную работу.

Формулировки второго закона термодинамики.

Для существования теплового двигателя необходимы два источника - горячий источник и холодный источник (окружающая среда). Если тепловой двигатель работает только от одного источника, то он называется вечным двигателем 2-го рода.

Первая формулировка (Оствальда):

"вечный двигатель 2-го рода невозможен".

Вечный двигатель первого рода это тепловой двигатель, у которого L>Q1, где Q1 - подведенная теплота. Первый закон термодинамики "позволяет" возможность создать тепловой двигатель, полностью превращающий подведенную теплоту Q1в работу L, т.е. L = Q1. Второй закон накладывает более жесткие ограничения и утверждает, что работа должна быть меньше подведенной теплоты (L

Вечный двигатель 2-го рода можно осуществить, если теплоту Q2 передать от холодного источника к горячему. Но для этого теплота самопроизвольно должна перейти от холодного тела к горячему, что невозможно. Отсюда следует вторая формулировка (Клаузиуса):

"теплота не может самопроизвольно переходит от более холодного тела к более нагретому".

Для работы теплового двигателя необходимы два источника - горячий и холодный. Третья формулировка (Карно):

"там где есть разница температур, возможно совершение работы".

Все эти формулировки взаимосвязаны, из одной формулировки можно получить другую. Одной из функций состояния термодинамической системы является энтропия. Энтропией называется величина, определяемая выражением:

dS = ?Q / T. [Дж/К] (7)

или для удельной энтропии:

ds = ?q /T [Дж/(кг·К)] (8)

Энтропия есть однозначная функция состояния тела, принимающая для каждого состояния вполне определенное значение. Она является экстенсивным (зависит от массы вещества) параметром состояния и в любом термодинамическом процессе полностью определяется начальным и конечным состоянием тела и не зависит от пути протекания процесса.

Энтропию можно определить как функцию основных параметров состояния:

S = f1(P,V); S = f2(P,T); S = f3(V,T); (9)

или для удельной энтропии:

s = f1(P,v); s = f2(P,T); S = f3(v,T); (10)

Так как энтропия не зависит от вида процесса и определяется начальными и конечными состояниями рабочего тела, то находят только её изменение в данном процессе, по следующим уравнениям:

S = cv·ln(T2/T1) + R?·ln(v2/v1); (11)

S = cp·ln(T2/T1) - R?·ln(P2/P1); (12)

S = cv·ln(Р2/Р1) + cр·ln(v 2/v 1). (13)

Если энтропия системы возрастает (?s > 0), то к системе подводится тепло.

Если энтропия системы уменьшается (?s < 0), то от системы отводится тепло.

Если энтропия системы не изменяется (?s = 0, s = сonst), то к системе не подводится и от неё не отводится тепло (адиабатный процесс или изоэнтропный процесс).

Термодинамическим процессом называют переход системы из одного равновесного состояния в другое. Если система в результате совершения нескольких процессов приходит в первоначальное состояние, то говорят, что она совершила замкнутый процесс или цикл. Циклом Карно называется круговой цикл, состоящий из 2-х изотермических (протекающих при постоянной температуре) и из 2-х адиабатных процессов (протекающих без теплообмена с окружающей средой). Обратимый цикл Карно в p-v- и T-s- диаграммах показан на рис.1: 1-2 - обратимое адиабатное расширение при s1=сonst. Температура уменьшается от Т1 до Т2.

2-3 - изотермическое сжатие, отвод теплоты q2 к холодному источнику от рабочего тела.

3-4 - обратимое адиабатное сжатие при s2=сonst. Температура повышается от Т3 до Т4.

4-1 - изотермическое расширение, подвод теплоты q1 к горячего источника к рабочему телу.

Основной характеристикой любого цикла является термический коэффициент полезного действия (т.к.п.д.).

T = Lц / Qц, (14)

или?t = (Q1 - Q2) / Q1.

Рис.1.

Для обратимого цикла Карно термический к.п.д. определяется по формуле:

Tк = (Т1 - Т2) / Т1. (15)

Отсюда следует первая теорема Карно:

"термический к.п.д. обратимого цикла Карно не зависит от свойств рабочего тела и определяется только температурами источников".

Из сравнения произвольного обратимого цикла и цикла Карно вытекает 2-я теорема Карно:

"обратимый цикл Карно является наивыгоднейшим циклом в заданном интервале температур"

Следовательно, термический к.п.д. цикла Карно всегда больше термического к.п.д. произвольного цикла:

Tк > ?t. (16)

Дальнейшие работы по термодинамике показали, что энтропия имеет глубокий физический смысл. В необратимых процессах она возрастает и достигает максимума, когда система приходит в состояние теплового равновесия. Например, в Солнечной системе, согласно второму закону термодинамики, идут процессы, приводящие к возрастанию энтропии. Происходит рассеяние энергии Солнца, что в конечном итоге приведёт Солнечную систему в состояние теплового равновесия с очень низкой температурой. Клаузиус назвал это явление тепловой смертью Солнечной системы. Он же распространил этот вывод и на всю Вселенную и предсказал тепловую смерть Вселенной. Однако данные астрофизики последних десятилетий показывают, что во Вселенной идут процессы, противоречащие второму закону термодинамики. В отдельных её частях вспыхивают сверхновые звёзды, т.е. идут процессы с уменьшением энтропии, что противоречит второму началу. Следовательно, второй закон термодинамики нельзя распространять на всю Вселенную, как это сделал Клаузиус.

В термодинамике цикл Карно́ или процесс Карно - это обратимый круговой процесс, состоящий из двух адиабатических и двух изотермических процессов . В процессе Карно термодинамическая система выполняет механическую работу и обменивается теплотой с двумя тепловыми резервуарами, имеющими постоянные, но различающиеся температуры. Резервуар с более высокой температурой называется нагревателем, а с более низкой температурой - холодильником

Цикл Карно назван в честь французского учёного и инженера Сади Карно, который впервые его описал в своём сочинении «О движущей силе огня и о машинах, способных развивать эту силу» в 1824 году

Поскольку обратимые процессы могут осуществляться лишь с бесконечно малой скоростью, мощность тепловой машины в цикле Карно равна нулю. Мощность реальных тепловых машин не может быть равна нулю, поэтому реальные процессы могут приближаться к идеальному обратимому процессу Карно только с большей или меньшей степенью точности. В цикле Карно тепловая машина преобразует теплоту в работу с максимально возможным коэффициентом полезного действия из всех тепловых машин, у которых максимальная и минимальная температуры в рабочем цикле совпадают соответственно с температурами нагревателя и холодильника в цикле Карно.

Описание цикла Карно

Цикл Карно в координатах T-S

Пусть тепловая машина состоит из нагревателя с температурой , холодильника с температурой и рабочего тела.

Цикл Карно состоит из четырёх обратимых стадий, две из которых осуществляются при постоянной температуре (изотермически), а две - при постоянной энтропии (адиабатически). Поэтому цикл Карно удобно представить в координатах T (температура) и S (энтропия).

1. Изотермическое расширение (на рис. 1 - процесс A→Б). В начале процесса рабочее тело имеет температуру , то есть температуру нагревателя. Затем тело приводится в контакт с нагревателем, который изотермически (при постоянной температуре) передаёт ему количество теплоты . При этом объём рабочего тела увеличивается, оно совершает механическую работу, а его энтропия возрастает.

2. Адиабатическое расширение (на рис. 1 - процесс Б→В). Рабочее тело отсоединяется от нагревателя и продолжает расширяться без теплообмена с окружающей средой. При этом температура тела уменьшается до температуры холодильника , тело совершает механическую работу, а энтропия остаётся постоянной.

3. Изотермическое сжатие (на рис. 1 - процесс В→Г). Рабочее тело, имеющее температуру , приводится в контакт с холодильником и начинает изотермически сжиматься под действием внешней силы, отдавая холодильнику количество теплоты . Над телом совершается работа, его энтропия уменьшается.

4. Адиабатическое сжатие (на рис. 1 - процесс Г→А). Рабочее тело отсоединяется от холодильника и сжимается под действием внешней силы без теплообмена с окружающей средой. При этом его температура увеличивается до температуры нагревателя, над телом совершается работа, его энтропия остаётся постоянной.

Кпд тепловой машины Карно

Количество теплоты, полученное рабочим телом от нагревателя при изотермическом расширении, равно

Аналогично, при изотермическом сжатии рабочее тело отдаёт холодильнику

Отсюда коэффициент полезного действия тепловой машины Карно равен

.