В анафазе мейоза 1 происходит. Мейоз и митоз - отличие, фазы

Мейоз (греч. meiosis – уменьшение, убывание) или редукционное деление. В результате мейоза происходит уменьшение числа хромосом, т.е. из диплоидного набора хромосом (2п) образуется гаплоидный (n).

Мейоз состоит из 2-х последовательных делений:
I деление называется редукционное или уменьшительное.
II деление называется эквационное или уравнительное, т.е. идет по типу митоза (значит число хромосом в материнской и дочерних клетках остается прежним).

Биологический смысл мейоза заключается в том, что из одной материнской клетки с диплоидным набором хромосом образуется четыре гаплоидные клетки, таким образом количество хромосом уменьшается в два раза, а количество ДНК в четыре раза. В результате такого деления образуются половые клетки (гаметы) у животных и споры у растений.

Фазы называются также как и в митозе, а перед началом мейоза клетка также проходит интерфазу.

Профаза I – самая продолжительная фаза и ее условно делят на 5 стадий:
1) Лептонема (лептотена) – или стадия тонких нитей. Идет спирализация хромосом, хромосома состоит из 2-х хроматид, на еще тонких нитях хроматид видны утолщения или сгустки хроматина, которые называются – хромомерами.
2) Зигонема (зиготена, греч. сливающиеся нити) - стадия парных нитей. На этой стадии попарно сближаются гомологичные хромосомы (одинаковые по форме величине), они притягиваются и прикладываются друг к другу по всей длине, т.е. коньюгируют в области хромомеров. Это похоже на замок «молния». Пару гомологичных хромосом называют биваленты. Число бивалентов равно гаплоидному набору хромосом.
3) Пахинема (пахитена , греч. толстая) – стадия толстых нитей. Идет дальнейшая спирализация хромосом. Затем каждая гомологичная хромосома расщепляется в продольном направлении и становится хорошо видно, что каждая хромосома состоит из двух хроматид такие структуры называют тетрадами, т.е. 4 хроматиды. В это время идет кроссинговер, т.е. обмен гомологичными участками хроматид.
4) Диплонема (диплотена) – стадия двойных нитей. Гомологичные хромосомы начинают отталкиваться, отходят друг от друга, но сохраняют взаимосвязь при помощи мостиков – хиазм, это места где произойдет кроссинговер. В каждом соединении хроматид (т.е. хиазме), осуществляется обмен участками хроматид. Хромосомы спирализуются и укорачиваются.
5) Диакинез – стадия обособленных двойных нитей. На этой стадии хромосомы полностью уплотнены и интенсивно окрашиваются. Ядерная оболочка и ядрышки разрушаются. Центриоли перемещаются к полюсам клетки и образуют нити веретена деления. Хромосомный набор профазы I составляет - 2n4c.
Таким образом, в профазу I происходит:
1. конъюгация гомологичных хромосом;
2. образование бивалентов или тетрад;
3. кроссинговер.

В зависимости от конъюгирования хроматид могут быть различные виды кроссинговера: 1 – правильный или неправильный; 2 – равный или неравный; 3 – цитологический или эффективный; 4 – единичный или множественный.

Метафаза I – спирализация хромосом достигает максимума. Биваленты выстраиваются вдоль экватора клетки, образуя метафазную пластинку. К центромерам гомологичных хромосом крепятся нити веретена деления. Биваленты оказываются соединенными с разными полюсами клетки.
Хромосомный набор метафазы I составляет - 2n4c.

Анафаза I – центромеры хромосом не делятся, фаза начинается с деления хиазм. К полюсам клетки расходятся целые хромосомы, а не хроматиды. В дочерние клетки попадает только по одной из пары гомологичных хромосом, т.е. идет их случайное перераспределение. На каждом полюсе, оказывается, по набору хромосом - 1п2с, а в целом хромосомный набор анафазы I составляет - 2n4c.

Телофаза I – по полюсам клетки находится целые хромосомы, состоящие из 2-х хроматид, но количество их стало в 2 раза меньше. У животных и некоторых растений хроматиды деспирализуются. Вокруг них на каждом полюсе формируется ядерная мембрана.
Затем идет цитокинез
. Хромосомный набор образовавшихся после первого деления клеток составляет - n2c.

Между I и II делениями нет S-периода и не идет репликация ДНК, т.к. хромосомы уже удвоены и состоят из сестринских хроматид, поэтому интерфазу II называют интеркинезом – т.е. происходит перемещение между двумя делениями.

Профаза II – очень короткая и идет без особых изменений, если в телофазу I не образуется ядерная оболочка, то сразу образуются нити веретена деления.

Метафаза II – хромосомы выстраиваются вдоль экватора. Нити веретена деления крепятся к центромерам хромосом.
Хромосомный набор метафазы II составляет - n2c.

Анафаза II – центромеры делятся и нити веретена деления разводят хроматиды к разным полюсам. Сестринские хроматиды называются дочерними хромосомами(или материнские хроматиды это и будут дочерние хромосомы).
Хромосомный набор анафазы II составляет - 2n2c.

Телофаза II – хромосомы деспирализуются, растягиваются и после этого плохо различимы. Образуются ядерные оболочки, ядрышки. Телофаза II завершается цитокинезом.
Хромосомный набор после телофазы II составляет – nc.

Схема мейотического деления

Деление клеток посредством мейоза проходит в два основных этапа: мейоз I и мейоз II. В конце мейотического процесса образуются четыре . Прежде чем делящаяся клетка попадет в мейоз, она проходит через период , называемый интерфазой.

Интерфаза

  • Фаза G1: этап развития клетки перед синтезом ДНК. На этой стадии клетка подготавливаясь к делению увеличивается в массе.
  • S-фаза: период, в течение которого синтезируется ДНК. Для большинства клеток эта фаза занимает короткий промежуток времени.
  • Фаза G2: период после синтеза ДНК, но до начала профазы. Клетка продолжает синтезировать дополнительные белки и увеличиваться в размерах.

В последней фазе интерфазы клетка все еще имеет нуклеолы. окружено ядерной мембраной, а клеточное хромосомы дублируются, но находятся в форме . В две пары , образованных из репликации одной пары, расположены за пределами ядра. В конце интерфазы клетка переходит в первый этап мейоза.

Мейоз I:

Профаза I

В профазе I мейоза происходят следующие изменения:

  • Хромосомы конденсируются и присоединяются к ядерной оболочке.
  • Возникает синапсис (попарное сближение гомологичных хромосом) и образуется тетрада. Каждая тетрада состоит из четырех хроматид.
  • Может произойти генетическая рекомбинация.
  • Хромосомы сгущаются и отсоединяются от ядерной оболочки.
  • Подобно , центриоли мигрируют друг от друга, а ядерная оболочка и ядрышки разрушаются.
  • Хромосомы начинают миграцию к метафазной (экваториальной) пластине.

В конце профазы I клетка входит в метафазу I.

Метафаза I

В метафазе I мейоза происходят следующие изменения:

  • Тетрады выравниваются на метафазной пластине.
  • гомологичных хромосом ориентированы на противоположные полюса клетки.

В конце метафазы I клетка входит в анафазу I.

Анафаза I

В анафазе I мейоза происходят происходят следующие изменения:

  • Хромосомы перемещаются в противоположные концы клетки. Подобно митозу, кинетохоры взаимодействуют с микротрубочками, чтобы переместить хромосомы к полюсам клетки.
  • В отличие от митоза, остаются вместе после того, как перемещаются в противоположные полюса.

В конце анафазы I клетка входит в телофазу I.

Телофаза I

В телофазе I мейоза происходят следующие изменения:

  • Волокна веретена продолжают перемещать гомологичные хромосомы на полюса.
  • Как только движение завершено, каждый полюс клетки имеет гаплоидное количество хромосом.
  • В большинстве случаев цитокинез (деление ) происходит одновременно с телофазой I.
  • В конце телофазы I и цитокинеза образуются две дочерние клетки, каждая из которых имеет половину числа хромосом исходной родительской клетки.
  • В зависимости от типа клетки могут возникать различные процессы при подготовке к мейозу II. Однако генетический материал не реплицируется снова.

В конце телофазы I клетка входит в профазу II.

Мейоз II:

Профаза II

В профазе II мейоза происходят следующие изменения:

  • Ядерная и ядра разрушаются, пока появляется веретено деления.
  • Хромосомы больше не реплицируются в этой фазе.
  • Хромосомы начинают мигрировать к метафазной пластинке II (на экваторе клеток).

В конце профазы II клетки входят в метафазу II.

Метафаза II

В метафазе II мейоза происходят следующие изменения:

  • Хромосомы выстраиваются на метафазной пластинке II в центре клеток.
  • Кинетохорные нити сестринских хроматид расходятся к противоположным полюсам.

В конце метафазы II клетки входят в анафазу II.

Анафаза II

В анафазе II мейоза происходят следующие изменения:

  • Сестринские хроматиды разделяются и начинают перемещаться к противоположным концам (полюсам) клетки. Волокна веретена деления, не связанные с хроматидами, вытягиваются и удлиняют клетки.
  • Как только парные сестринские хроматиды отделены друг от друга, каждая из них считается полной хромосомой, называемые .
  • При подготовке к следующему этапу мейоза два полюса клеток также отдаляются друг от друга во время анафазы II. В конце анафазы II каждый полюс содержит полную компиляцию хромосом.

После анафазы II клетки входят в телофазу II.

Телофаза II

В телофазе II мейоза происходят следующие изменения:

  • Образуются отдельные ядра на противоположных полюсах.
  • Происходит цитокинез (деление цитоплазмы и образование новых клеток).
  • В конце мейоза II производятся четыре дочерние клетки. Каждая клетка имеет половину числа хромосом от исходной родительской клетки.

Результат мейоза

Конечным результатом мейоза является производство четырех дочерних клеток. Эти клетки имеют в двое меньше хромосом относительно родительской. При мейозе продуцируются только половые . Другие делятся посредством митоза. Когда половые объединяются во время оплодотворения, они становятся . Диплоидные клетки имеют полный набор гомологичных хромосом.

Митоз — основной способ деления эукариотических клеток, при котором сначала происходит удвоение, а затем равномерное распределение между дочерними клетками наследственного материала.

Митоз представляет собой непрерывный процесс, в котором выделяют четыре фазы: профазу, метафазу, анафазу и телофазу. Перед митозом происходит подготовка клетки к делению, или интерфаза. Период подготовки клетки к митозу и собственно митоз вместе составляют митотический цикл . Ниже приводится краткая характеристика фаз цикла.

Интерфаза состоит из трех периодов: пресинтетического, или постмитотического, — G 1 , синтетического — S, постсинтетического, или премитотического, — G 2 .

Пресинтетический период (2n 2c , где n — число хромосом, с — число молекул ДНК) — рост клетки, активизация процессов биологического синтеза, подготовка к следующему периоду.

Синтетический период (2n 4c ) — репликация ДНК.

Постсинтетический период (2n 4c ) — подготовка клетки к митозу, синтез и накопление белков и энергии для предстоящего деления, увеличение количества органоидов, удвоение центриолей.

Профаза (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом.

Метафаза (2n 4c ) — выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза (4n 4c ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза (2n 2c в каждой дочерней клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счет борозды деления, в растительных клетках — за счет клеточной пластинки.

1 — профаза; 2 — метафаза; 3 — анафаза; 4 — телофаза.

Биологическое значение митоза. Образовавшиеся в результате этого способа деления дочерние клетки являются генетически идентичными материнской. Митоз обеспечивает постоянство хромосомного набора в ряду поколений клеток. Лежит в основе таких процессов, как рост, регенерация, бесполое размножение и др.

— это особый способ деления эукариотических клеток, в результате которого происходит переход клеток из диплоидного состояния в гаплоидное. Мейоз состоит из двух последовательных делений, которым предшествует однократная репликация ДНК.

Первое мейотическое деление (мейоз 1) называется редукционным, поскольку именно во время этого деления происходит уменьшение числа хромосом вдвое: из одной диплоидной клетки (2n 4c ) образуются две гаплоидные (1n 2c ).

Интерфаза 1 (в начале — 2n 2c , в конце — 2n 4c ) — синтез и накопление веществ и энергии, необходимых для осуществления обоих делений, увеличение размеров клетки и числа органоидов, удвоение центриолей, репликация ДНК, которая завершается в профазе 1.

Профаза 1 (2n 4c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, «исчезновение» ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер. Конъюгация — процесс сближения и переплетения гомологичных хромосом. Пару конъюгирующих гомологичных хромосом называют бивалентом . Кроссинговер — процесс обмена гомологичными участками между гомологичными хромосомами.

Профаза 1 подразделяется на стадии: лептотена (завершение репликации ДНК), зиготена (конъюгация гомологичных хромосом, образование бивалентов), пахитена (кроссинговер, перекомбинация генов), диплотена (выявление хиазм, 1 блок овогенеза у человека), диакинез (терминализация хиазм).

1 — лептотена; 2 — зиготена; 3 — пахитена; 4 — диплотена; 5 — диакинез; 6 — метафаза 1; 7 — анафаза 1; 8 — телофаза 1;
9 — профаза 2; 10 — метафаза 2; 11 — анафаза 2; 12 — телофаза 2.

Метафаза 1 (2n 4c ) — выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом.

Анафаза 1 (2n 4c ) — случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая — к другому), перекомбинация хромосом.

Телофаза 1 (1n 2c в каждой клетке) — образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы. У многих растений клетка из анафазы 1 сразу же переходит в профазу 2.

Второе мейотическое деление (мейоз 2) называется эквационным .

Интерфаза 2 , или интеркинез (1n 2c ), представляет собой короткий перерыв между первым и вторым мейотическими делениями, во время которого не происходит репликация ДНК. Характерна для животных клеток.

Профаза 2 (1n 2c ) — демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2 (1n 2c ) — выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим — к центромерам хромосом; 2 блок овогенеза у человека.

Анафаза 2 (2n 2с ) — деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2 (1n 1c в каждой клетке) — деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием в итоге четырех гаплоидных клеток.

Биологическое значение мейоза. Мейоз является центральным событием гаметогенеза у животных и спорогенеза у растений. Являясь основой комбинативной изменчивости, мейоз обеспечивает генетическое разнообразие гамет.

Амитоз

Амитоз — прямое деление интерфазного ядра путем перетяжки без образования хромосом, вне митотического цикла. Описан для стареющих, патологически измененных и обреченных на гибель клеток. После амитоза клетка не способна вернуться в нормальный митотический цикл.

Клеточный цикл

Клеточный цикл — жизнь клетки от момента ее появления до деления или смерти. Обязательным компонентом клеточного цикла является митотический цикл, который включает в себя период подготовки к делению и собственно митоз. Кроме этого, в жизненном цикле имеются периоды покоя, во время которых клетка выполняет свойственные ей функции и избирает дальнейшую судьбу: гибель или возврат в митотический цикл.

    Перейти к лекции №12 «Фотосинтез. Хемосинтез»

    Перейти к лекции №14 «Размножение организмов»

Мейоз – это особый способ деления эукариотических клеток, при котором исходное число хромосом уменьшается в два раза (от древнегреч. «мейон» – меньше – и от «мейозис» – уменьшение).

Главной особенностью мейоза является конъюгация (спаривание) гомологичных хромосом с последующим расхождением их в разные клетки. Поэтому в первом делении мейоза вследствие образования бивалентов к полюсам клетки расходятся не однохроматидные, а двухроматидные хромосомы. В результате число хромосом уменьшается в два раза, и из диплоидной клетки образуются гаплоидные клетки.

Исходное число хромосом в клетке, которая вступает в мейоз, называется диплоидным (2n). Число хромосом в клетках, образовавшихся в ходе мейоза, называется гаплоидным (n).

Мейоз состоит из двух последовательных клеточных делений, которые соответственно называются мейоз I и мейоз II. В первом делении происходит уменьшение числа хромосом в два раза, поэтому его называют редукционным. Во втором делении число хромосом не изменяется; поэтому его называют эквационным (уравнивающим).

Предмейотическая интерфаза отличается от обычной интерфазы тем, что процесс репликации ДНК не доходит до конца: примерно 0,2...0,4 % ДНК остается неудвоенной. Однако в целом, можно считать, что в диплоидной клетке (2n) содержание ДНК составляет 4с. При наличии центриолей происходит их удвоение. Таким образом, в клетке имеется две диплосомы, каждая из которых содержит пару центриолей.

Первое деление мейоза (редукционное, или мейоз I)

Сущность редукционного деления заключается в уменьшении числа хромосом в два раза: из исходной диплоидной клетки образуется две гаплоидные клетки с двухроматидными хромосомами (в состав каждой хромосомы входит 2 хроматиды).

Профаза I (профаза первого деления) включает ряд стадий.

Лептотена (стадия тонких нитей). Хромосомы видны в световой микроскоп в виде клубка тонких нитей.

Зиготена (стадия сливающихся нитей). Происходит конъюгация гомологичных хромосом (от лат. conjugatio – соединение, спаривание, временное слияние). Гомологичные хромосомы (или гомологи) – это парные хромосомы, сходные между собой в морфологическом и генетическом отношении. В результате конъюгации образуются биваленты. Бивалент – это относительно устойчивый комплекс из двух гомологичных хромосом. Гомологи удерживаются друг около друга с помощью белковых синаптонемальных комплексов. Количество бивалентов равно гаплоидному числу хромосом. Иначе биваленты называются тетрады, так как в состав каждого бивалента входит 4 хроматиды.

Пахитена (стадия толстых нитей). Хромосомы спирализуются, хорошо видна их продольная неоднородность. Завершается репликация ДНК. Завершается кроссинговер – перекрест хромосом, в результате которого они обмениваются участками хроматид.

Диплотена (стадия двойных нитей). Гомологичные хромосомы в бивалентах отталкиваются друг от друга. Они соединены в отдельных точках, которые называются хиазмы (от древнегреч. буквы χ – «хи»).

Диакинез (стадия расхождения бивалентов). Хиазмы перемещаются к теломерным участкам хромосом. Биваленты располагаются на периферии ядра. В конце профазы I ядерная оболочка разрушается, и биваленты выходят в цитоплазму.

Метафаза I (метафаза первого деления). Формируется веретено деления. Биваленты перемещаются в экваториальную плоскость клетки. Образуется метафазная пластинка из бивалентов.

Анафаза I (анафаза первого деления). Гомологичные хромосомы, входящие в состав каждого бивалента, разъединяются, и каждая хромосома движется в сторону ближайшего полюса клетки. Разъединения хромосом на хроматиды не происходит.

Телофаза I (телофаза первого деления). Гомологичные двухроматидные хромосомы полностью расходятся к полюсам клетки. В норме каждая дочерняя клетка получает одну гомологичную хромосому из каждой пары гомологов. Формируются два гаплоидных ядра, которые содержат в два раза меньше хромосом, чем ядро исходной диплоидной клетки. Каждое гаплоидное ядро содержит только один хромосомный набор, то есть каждая хромосома представлена только одним гомологом. Содержание ДНК в дочерних клетках составляет 2с.

В большинстве случаев (но не всегда) телофаза I сопровождается цитокинезом.

После первого деления мейоза наступает интеркинез – короткий промежуток между двумя мейотическими делениями. Интеркинез отличается от интерфазы тем, что не происходит репликации ДНК, удвоения хромосом и удвоения центриолей: эти процессы произошли в предмейотической интерфазе и, частично, в профазе I.

Второе деление мейоза (эквационное, или мейоз II)

В ходе второго деления мейоза уменьшения числа хромосом не происходит. Сущность эквационного деления заключается в образовании четырех гаплоидных клеток с однохроматидными хромосомами (в состав каждой хромосомы входит одна хроматида).

Профаза II (профаза второго деления). Не отличается существенно от профазы митоза. Хромосомы видны в световой микроскоп в виде тонких нитей. В каждой из дочерних клеток формируется веретено деления.

Метафаза II (метафаза второго деления). Хромосомы располагаются в экваториальных плоскостях гаплоидных клеток независимо друг от друга. Эти экваториальные плоскости могут быть параллельны друг другу или взаимно перпендикулярны.

Анафаза II (анафаза второго деления). Хромосомы разделяются на хроматиды (как при митозе). Получившиеся однохроматидные хромосомы в составе анафазных групп перемещаются к полюсам клеток.

Телофаза II (телофаза второго деления). Однохроматидные хромосомы полностью переместились к полюсам клетки, формируются ядра. Содержание ДНК в каждой из клеток становится минимальным и составляет 1с.

Таким образом, в результате описанной схемы мейоза из одной диплоидной клетки образуется четыре гаплоидные клетки. Дальнейшая судьба этих клеток зависит от таксономической принадлежности организмов, от пола особи и ряда других факторов.

Типы мейоза. При зиготном и споровом мейозе образовавшиеся гаплоидные клетки дают начало спорам (зооспорам). Эти типы мейоза характерны для низших эукариот, грибов и растений. Зиготный и споровый мейоз тесно связан со спорогенезом. При гаметном мейозе из образовавшихся гаплоидных клеток образуются гаметы. Этот тип мейоза характерен для животных. Гаметный мейоз тесно связан с гаметогенезом и оплодотворением. Таким образом, мейоз – это цитологическая основа полового и бесполого (спорового) размножения.

Биологическое значение мейоза. Немецкий биолог Август Вайсман (1887) теоретически обосновал необходимость мейоза как механизма поддержания постоянного числа хромосом. Поскольку при оплодотворении ядра половых клеток сливаются (и, тем самым, в одном ядре объединяются хромосомы этих ядер), и поскольку число хромосом в соматических клетках остается константным, то постоянному удвоению числа хромосом при последовательных оплодотворениях должен противостоять процесс, приводящий к сокращению их числа в гаметах ровно вдвое. Таким образом, биологическое значение мейоза заключается в поддержании постоянства числа хромосом при наличии полового процесса. Мейоз обеспечивает также комбинативную изменчивость – появление новых сочетаний наследственных задатков при дальнейшем оплодотворении.

Половые клетки животных формируются в результате особого типа деления, при котором число хромосом во вновь образующихся клетках в два раза меньше, чем в исходной материнской клетке. Таким образом, из диплоидной клетки образуются гаплоидные клетки. Это необходимо для того, чтобы сохранить постоянный набор хромосом организмов при половом размножении.

Мейоз (от греч. meiosis - уменьшение) - редукционное деление, при котором хромосомный набор клетки уменьшается вдвое.

Для мейоза характерны те же стадии, что и для митоза, но процесс состоит из двух последовательных делений - I деление и II деление мейоза.

В результате образуются не две, а четыре клетки с гаплоидным набором хромосом.

Стадии мейоза

Как и митозу, мейозу предшествует интерфаза, продолжительность которой зависит от вида организма и бывает различной. Перед делением происходит синтез белка и редупликация ДНК. Клетка увеличивается в размерах за счет удвоения количества органоидов. Каждая хромосома в конце интерфазы состоит из двух молекул ДНК, которые образуют две сестринские хроматиды, сцепленные центромерой, поэтому хромосомный набор клетки сохраняется диплоидным. Таким образом, перед началом деления набор хромосом и ДНК соответственно составляет 2n4c.

Профаза I. Профаза первого деления мейоза значительно длиннее, чем в митозе, кроме того, она сложнее. Ее подразделяют на пять стадий.

Лептотена. Хромосомы спирализуются, становятся хорошо заметными. Каждая состоит из двух сестринских хроматид, но они тесно сближены и создают впечатление одной тонкой нити. Отдельные участки хромосом интенсивно окрашены за счет более сильной спирализации и называются хромомерами. Гомологичные хромосомы попарно соединяются и накладываются друг на друга - конъюгируют. В результате образуются биваленты - двойные хромосомы.

Зиготена. На этой стадии происходит тесное сближение и соединение гомологичных хромосом - конъюгация. Они накладываются друг на друга, причем однотипные участки с одинаковыми генами четко соприкасаются друг с другом. Пары соединенных (конъюгированных) гомологичных хромосом образуют биваленты (от лат. би - двойной). Каждая гомологичная хромосома состоит из двух сестринских хроматид, значит, биваленты фактически состоят из четырех хроматид и представляют собой тетрады (от лат. тетра - четыре).

Пахитена. Это достаточно длительная стадия, так как именно в этот период между конъюгированными хромосомами может происходить обмен отдельными участками - кроссинговер (рис. 9). Между несестринскими хроматидами двух гомологичных хромосом начинается обмен некоторыми генами, что приводит к рекомбинации генов в хромосомах. Биваленты продолжают укорачиваться и утолщаться.

Рис. 9. Кроссинговер. Последовательность процесса: А - репликация ДНК и удвоение хромосом; Б - конъюгация; В - кроссинговер

Диплотена. На этой стадии гомологичные хромосомы начинают отталкиваться друг от друга. Конъюгация заканчивается, однако хромосомы еще связаны друг с другом в точках, в которых происходил кроссинговер. В таком состоянии они могут находиться довольно долго.

Диакинез. Гомологичные хромосомы продолжают отталкиваться друг от друга и остаются соединенными только в некоторых точках. Они приобретают определенную форму и теперь хорошо заметны. Каждый бивалент состоит из четырех хроматид, сцепленных попарно центромерами. Ядерная мембрана постепенно исчезает, центриоли расходятся к полюсам клетки, и образуются нити веретена деления. Профаза I занимает 90 % от всего времени мейоза (рис. 10).

Рис. 10. Мейоз: А - профаза I; Б - метафаза I; В - анафаза I; Г - телофаза I; Д - профаза II; Е - метафаза II; Ж - анафаза II; 3 - телофаза II

Метафаза I. Гомологичные хромосомы попарно в виде бивалентов выстраиваются в экваториальной зоне клетки над и под плоскостью экватора. Образуется метафазная пластинка. Центромеры хромосом соединяются с нитями веретена деления.

Анафаза I. Гомологичные хромосомы расходятся к полюсам клетки. Это основное отличие мейоза от митоза. Таким образом, у каждого полюса оказывается только одна хромосома из пары, т. е. происходит уменьшение числа хромосом вдвое - редукция. Первое деление мейоза называется редукционным.

Телофаза /. Первое деление мейоза завершается цитокинезом - делится все остальное содержимое клетки. В цитоплазме образуется перетяжка и возникают две клетки с гаплоидным набором хромосом. Формируется ядерная оболочка и ядро. Хромосомы состоят из двух хроматид, но теперь они не идентичны друг другу вследствие кроссинговера. Число хромосом в каждой клетке равно соответственно n, а ДНК - 2c.

Образование двух клеток может происходить не всегда. Иногда телофаза завершается только формированием двух гаплоидных ядер.

Мейоз II. Перед вторым делением мейоза интерфаза очень короткая (у животных), но может и вообще отсутствовать (у растений). В интерфазе II репликации ДНК не происходит, число хромосом и ДНК сохраняются неизменными. Обе клетки или ядра после непродолжительного перерыва одновременно приступают ко второму делению мейоза.

Мейоз II полностью идентичен митозу и протекает в двух клетках (ядрах) синхронно. Здесь происходят два главных события: расхождение сестринских хроматид и образование гаплоидных клеток.

Профаза II. Ядерная мембрана исчезает, образуется веретено деления. Хромосомы спирализуются, укорачиваются и утолщаются. Фаза значительно короче профазы I. При отсутствии интерфазы II иногда профаза II также может практически отсутствовать.

Метафаза II. Хромосомы выстраиваются в плоскости экватора. Нити веретена деления соединены с центромерами. Веретено деления в мейозе II перпендикулярно веретену первого деления.

Анафаза II. Центромеры делятся. К полюсам клетки расходятся сестринские хроматиды, которые теперь становятся хромосомами. У каждого полюса образуется гаплоидный набор хромосом, где каждая хромосома состоит теперь из одной молекулы ДНК.

Телофаза II. Хромосомы деспирализуются, становятся плохо различимыми. Нити веретена деления исчезают. Формируется ядерная мембрана. Далее происходит цитокинез, как и в митозе. Образуются 4 гаплоидных ядра или 4 гаплоидные клетки. Число хромосом и ДНК в каждой клетке равно соответственно n и c.

Биологический смысл мейоза заключается в образовании гаплоидных клеток, которые в результате полового размножения сливаются, и вновь восстанавливается диплоидный набор. Этот процесс обеспечивает постоянный набор хромосом у вновь образующихся организмов.

Поведение хромосом в мейозе

Мейоз обеспечивает появление разнообразных по качеству генетической информации гамет. Это связано с особым поведением хромосом в мейозе (рис. 11).

Рис. 11. Поведение хромосом в мейозе: А - распределение гомологичных хромосом; Б - независимое распределение негомологичных хромосом; В - кроссинговер и нарушение сцепления генов

В мейозе гомологичные хромосомы всегда попадают в разные гаметы. Так как гомологичные хромосомы могут нести разные по качеству признаки, следовательно, гаметы не идентичны по генному набору.

Негомологичные хромосомы расходятся в гаметы произвольно, независимо друг от друга. Это связано со случайным расположением бивалентов в мейозе I и их независимым расхождением в анафазе I. Следовательно, отцовские и материнские хромосомы распределяются в гаметах случайным образом. Этот процесс называется независимым распределением, что увеличивает число типов гамет и является основой для генетического разнообразия организмов.

Число типов гамет у диплоидных организмов можно определить по формуле:

где N - число типов гамет, n - число пар хромосом организма.

Например, у дрозофилы кариотип равен 8, число пар хромосом - 4.

У человека кариотип составляет 46 хромосом, т. е. 23 пары.

N= 2 23 = 8 388 608

Конъюгация и кроссинговер способствуют рекомбинации генов, изменяется сочетание генов в хромосоме, что увеличивает разнообразие гамет и сочетание признаков в организме.

Мейоз в жизненном цикле организмов

Мейоз в жизненном цикле организма от одного полового размножения до другого происходит один раз. У многоклеточных животных и высших растений диплоидная фаза длительная и сложная. Она соответствует взрослому организму. Фаза гаплоидных клеток непродолжительна и проста. Это чаще всего половые клетки или группа клеток, в которых они образуются. Однако у некоторых организмов гаплоидная фаза соответствует взрослому состоянию, а диплоидной является лишь оплодотворенная яйцеклетка - зигота (рис. 12).

Рис. 12. Схема жизненных циклов организмов: А - жизненный цикл низших растений водорослей, грибов; мейоз происходит сразу после образования зиготы, взрослое поколение гаплоидное; Б - жизненный цикл животных; В - жизненный цикл высших растений, чередование гаплоидного и диплоидного поколения

У животных мейоз происходит при образовании гамет. Гаплоидными являются только гаметы. После оплодотворения диплоидный набор хромосом восстанавливается, поэтому зигота и взрослый организм диплоидные.

У высших растений мейоз происходит при образовании спор, из которых потом развивается гаплоидный организм - гаметофит. Он может представлять собой взрослый организм (у мхов) или только несколько клеток на основном растении - спорофите. В обоих случаях на нем в процессе митоза образуются гаметы, а после оплодотворении - диплоидная зигота. Она дает начало спорофиту.

У некоторых низших растений, одноклеточных животных, грибов мейоз происходит сразу же после образования зиготы. Взрослый организм существует только в гаплоидной форме.

Вопросы для самоконтроля

1. Какой тип деления клетки лежит в основе полового размножения?

2. Какие клетки образуются в результате мейотического деления?

3. Охарактеризуйте фазы мейоза.

4. Объясните биологический смысл мейоза.

5. Почему редукционное деление имеет место только при половом размножении?

6. В чем основное отличие мейоза от митоза? Сравните деление мейоза I, мейоза II и митоза. В чем их сходство и отличие?

7. Как распределяются гомологичные и негомологичные хромосомы в мейозе?

8. Объясните, почему при мейозе происходит образование значительного числа типов гамет.

9. Определите, сколько и какие типы гамет образуются из клетки с набором хромосом AaBbCc.

10. Как циклы развития организмов связаны с мейозом?

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Из книги Удивительная генетика автора Левитин Вадим

Мейоз и митоз Митоз – это деление клетки. Как известно, почти все клетки нашего организма время от времени делятся, но это не банальное деление пополам, а сложный многофазный процесс. Однако прежде чем говорить о митозе (и о другом варианте клеточного деления – мейозе),

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

20. Образование половых клеток. Мейоз Вспомните!Где в организме человека происходит образование половых клеток?Какой набор хромосом содержат гаметы? Почему?Для осуществления полового размножения необходимы специализированные клетки – гаметы, содержащие одинарный

Из книги Генетика человека с основами общей генетики [Учебное пособие] автора

3.5. Мейоз Современные представления о цитологических основах наследственности сформировались только после выяснения генетического смысла процесса мейотического деления клеток.Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Мейоз Мейоз – это процесс образования гаплоидных клеток, т. е. клеток, имеющих половинный набор хромосом. Примером гаплоидных клеток являются гаметы (половые клетки) и споры.Гамета – это клетка, способная объединяться с себе подобной клеткой с образованием зиготы –