Тригонометрия. «Мир тригонометрии

Синус, косинус, тангенс - при произнесении этих слов в присутствии учеников старших классов можно быть уверенным, что две трети из них потеряют интерес к дальнейшему разговору. Причина кроется в том, что основы тригонометрии в школе преподаются в полном отрыве от реальности, а потому учащиеся не видят смысла в изучении формул и теорем.

В действительности данная область знаний при ближайшем рассмотрении оказывается весьма интересной, а также прикладной - тригонометрия находит применение в астрономии, строительстве, физике, музыке и многих других областях.

Ознакомимся с основными понятиями и назовем несколько причин изучить этот раздел математической науки.

История

Неизвестно, в какой момент времени человечество начало создавать будущую тригонометрию с нуля. Однако документально зафиксировано, что уже во втором тысячелетии до нашей эры египтяне были знакомы с азами этой науки: археологами найден папирус с задачей, в которой требуется найти угол наклона пирамиды по двум известным сторонам.

Более серьезных успехов достигли ученые Древнего Вавилона. На протяжении веков занимаясь астрономией, они освоили ряд теорем, ввели особые способы измерения углов, которыми, кстати, мы пользуемся сегодня: градусы, минуты и секунды были заимствованы европейской наукой в греко-римской культуре, в которую данные единицы попали от вавилонян.

Предполагается, что знаменитая теорема Пифагора, относящаяся к основам тригонометрии, была известна вавилонянам почти четыре тысячи лет назад.

Название

Дословно термин «тригонометрия» можно перевести как «измерение треугольников». Основным объектом изучения в рамках данного раздела науки на протяжении многих веков был прямоугольный треугольник, а точнее - взаимосвязь между величинами углов и длинами его сторон (сегодня с этого раздела начинается изучение тригонометрии с нуля). В жизни нередки ситуации, когда практически измерить все требуемые параметры объекта (или расстояние до объекта) невозможно, и тогда возникает необходимость недостающие данные получить посредством расчётов.

Например, в прошлом человек не мог измерить расстояние до космических объектов, а вот попытки эти расстояния рассчитать встречаются задолго до наступления нашей эры. Важнейшую роль играла тригонометрия и в навигации: обладая некоторыми знаниями, капитан всегда мог сориентироваться ночью по звездам и скорректировать курс.

Основные понятия

Для освоения тригонометрии с нуля требуется понять и запомнить несколько основных терминов.

Синус некоторого угла - это отношение противолежащего катета к гипотенузе. Уточним, что противолежащий катет - это сторона, лежащая напротив рассматриваемого нами угла. Таким образом, если угол составляет 30 градусов, синус этого угла всегда, при любом размере треугольника, будет равен ½. Косинус угла - это отношение прилежащего катета к гипотенузе.

Тангенс - это отношение противолежащего катета к прилежащему (либо, что то же самое, отношение синуса к косинусу). Котангенс - это единица, деленная на тангенс.

Стоит упомянуть и знаменитое число Пи (3,14…), которое представляет собой половину длины окружности с радиусом в одну единицу.

Популярные ошибки

Люди, изучающие тригонометрию с нуля, совершают ряд ошибок - в основном по невнимательности.

Во-первых, при решении задач по геометрии необходимо помнить, что использование синусов и косинусов возможно только в прямоугольном треугольнике. Случается, что учащийся «на автомате» принимает за гипотенузу самую длинную сторону треугольника и получает неверные результаты вычислений.

Во-вторых, поначалу легко перепутать значения синуса и косинуса для выбранного угла: напомним, что синус 30 градусов численно равен косинусу 60, и наоборот. При подстановке неверного числа все дальнейшие расчёты окажутся неверными.

В-третьих, пока задача полностью не решена, не стоит округлять какие бы то ни было значения, извлекать корни, записывать обыкновенную дробь в виде десятичной. Часто ученики стремятся получить в задаче по тригонометрии «красивое» число и сразу же извлекают корень из трёх, хотя ровно через одно действие этот корень можно будет сократить.

Этимология слова «синус»

История слова «синус» поистине необычна. Дело в том, что буквальный перевод этого слова с латыни означает «впадина». Всё потому, что верное понимание слова затерялось при переводе с одного языка на другой.

Названия базовых тригонометрических функций произошли из Индии, где понятие синуса обозначалось словом «тетива» на санскрите - дело в том, что отрезок вместе с дугой окружности, на которую он опирался, походил на лук. Во времена расцвета арабской цивилизации индийские достижения в области тригонометрии были заимствованы, и термин перешел в арабский язык в виде транскрипции. Случилось так, что в этом языке уже было похожее слово, обозначающее впадину, и если арабы понимали фонетическую разницу между родным и заимствованным словом, то европейцы, переводящие научные трактаты на латынь, по ошибке буквально перевели арабское слово, никакого отношения к понятию синуса не имеющее. Им мы и пользуемся по сей день.

Таблицы значений

Существуют таблицы, в которые занесены числовые значения для синусов, косинусов и тангенсов всех возможных углов. Ниже представим данные для углов в 0, 30, 45, 60 и 90 градусов, которые необходимо выучить как обязательный раздел тригонометрии для «чайников», благо запомнить их довольно легко.

Если случилось так, что числовое значение синуса или косинуса угла «вылетело из головы», есть способ вывести его самостоятельно.

Геометрическое представление

Начертим круг, через его центр проведем оси абсцисс и ординат. Ось абсцисс располагается горизонтально, ось ординат - вертикально. Обычно они подписываются как «X» и «Y» соответственно. Теперь из центра окружности проведем прямую таким образом, чтобы между ней и осью X получился нужный нам угол. Наконец, из той точки, где прямая пересекает окружность, опустим перпендикуляр на ось X. Длина получившегося отрезка будет равна численному значению синуса нашего угла.

Данный способ весьма актуален, если вы забыли нужное значение, например, на экзамене, и учебника по тригонометрии под рукой нет. Точной цифры вы таким образом не получите, но разницу между ½ и 1,73/2 (синус и косинус угла в 30 градусов) вы точно увидите.

Применение

Одними из первых специалистов, использующих тригонометрию, были моряки, не имеющие никакого другого ориентира в открытом море, кроме неба над головой. Сегодня капитаны кораблей (самолётов и других видов транспорта) не ищут кратчайший путь по звёздам, зато активно прибегают к помощи GPS-навигации, которая без использования тригонометрии была бы невозможна.

Практически в каждом разделе физики вас ждут расчёты с использованием синусов и косинусов: будь то приложение силы в механике, расчёты пути объектов в кинематике, колебания, распространение волн, преломление света - без базовой тригонометрии в формулах просто не обойтись.

Ещё одна профессия, которая немыслима без тригонометрии - это геодезист. Используя теодолит и нивелир либо более сложный прибор - тахиометр, эти люди измеряют разницу в высоте между различными точками на земной поверхности.

Повторяемость

Тригонометрия имеет дело не только с углами и сторонами треугольника, хотя именно с этого она начинала своё существование. Во всех областях, где присутствует цикличность (биологии, медицине, физике, музыке и т. д.) вы встретитесь с графиком, название которого наверняка вам знакомо - это синусоида.

Такой график представляет собой развёрнутую вдоль оси времени окружность и внешне похож на волну. Если вы когда-нибудь работали с осциллографом на занятиях по физике, вы понимаете, о чем идет речь. Как музыкальный эквалайзер, так и прибор, отображающий сердечные ритмы, используют формулы тригонометрии в своей работе.

В заключение

Задумываясь о том, как выучить тригонометрию, большинство учащихся средней и старшей школы начинают считать её сложной и непрактичной наукой, поскольку знакомятся лишь со скучной информацией из учебника.

Что касается непрактичности - мы уже увидели, что в той или иной степени умение обращаться с синусами и тангенсами требуется практически в любой сфере деятельности. А что касается сложности… Подумайте: если люди пользовались этими знаниями больше двух тысяч лет назад, когда взрослый человек имел меньше знаний, чем сегодняшний старшеклассник, реально ли изучить данную область науки на базовом уровне лично вам? Несколько часов вдумчивых занятий с решением задач - и вы достигнете своей цели, изучив базовый курс, так называемую тригонометрию для «чайников».

  1. Повторить основные формулы тригонометрии и закрепить их знания в ходе выполнения упражнений;
  2. Развивать навыки самоконтроля, умений работать с компьютерной презентацией.
  3. Воспитание ответственного отношения к учебному труду, воли и настойчивости для достижения конечных результатов.

Оборудование: Компьютеры, компьютерная презентация.

Ожидаемый результат:

  1. Каждый ученик должен знать формулы тригонометрии и уметь применять их для преобразования тригонометрических выражений на уровне обязательных результатов.
  2. Знать вывод этих формул и уметь применять их для преобразования тригонометрических выражений.
  3. Знать формулы тригонометрии, уметь выводить эти формулы и применять их для более сложных тригонометрических выражений.

Основные этапы урока:

  1. Сообщение темы, цели, задач урока и мотивация учебной деятельности.
  2. Устный счёт
  3. Сообщение из истории математики
  4. Повторение (с 9 класса) формул тригонометрии с помощью компьютерной презентации
  5. Применение тригонометрических формул к преобразованию выражений
  6. Выполнение теста
  7. Подведение итогов урока
  8. Постановка задания на дом

Ход урока

I. Организационный момент.

Сообщение темы, цели, задач урока и мотивация учебной деятельности

II. Устная работа (задания заранее распечатаны у каждого учащегося):

Радианная мера двух углов треугольника равна и . Найдите градусную меру каждого из углов треугольника. Ответ : 60, 30, 90

Найдите радианную меру углов треугольника, если их величины относятся как 2:3:4. Ответ: , ,

Может ли косинус быть равным: а) , б) , в), г) , д) -2 ? Ответ: а) да; б) нет; в) нет; г) да; д) да.

Может ли синус быть равным: а) –3, 7 б) , в)? Ответ: а) нет; б) да; в) нет.

При каких значения a и b справедливы следующие равенства: а) cos x = ; б)sin x=; в) cos x= ; г) tg x= ; д) sin x = a? Ответ: а) /a/ 7; б) /a/ ; в) 0 г) b – любое число; д) -

III. Сообщение из истории тригонометрии (краткая историческая справка):

Тригонометрия возникла и развивалась в древности как один из разделов астрономии, как её вычислительный аппарат, отвечающий практическим нуждам человека.

Некоторые тригонометрические сведения были известны древним вавилонянам и египтянам, но основы этой науки заложены в Древней Греции.

Греческий астроном Гиппарх во II в. до н. э. составил таблицу числовых значений хорд в зависимости от величин стягиваемых ими дуг. Более полные сведения из тригонометрии содержатся в известном “Альмагесте” Птолемея. Сделанные расчёты позволили Птолемею составить таблицу, которая содержала хорды от 0 до 180 .

Название линий синуса и косинуса впервые были введены индийскими учёными. Они же составили первые таблицы синусов, хотя и менее точные, чем птолемеевы.

В Индии начинается по существу учение о тригонометрических величинах, названное позже гониометрией (от “гониа” - угол и “метрио” - измеряю).

На пороге XVII в. в развитии тригонометрии начинается новое направление – аналитическое.

Тригонометрия даёт необходимый метод развития многих понятий и методы решения реальных задач, возникающих в физике, механике, астрономии, геодозии, картографии и других науках. Кроме этого, тригонометрия является большим помощником в решении стереометрических задач.

IV. Работа на компьютерах с презентацией:

“Основные формулы тригонометрии” (Приложение1)

Предварительно напомнить технику безопасности в кабинете информатики.

  • Основные тригонометрические тождества.
  • Формулы сложения.
  • Формулы приведения
  • Формулы суммы и разности синусов (косинусов).
  • Формулы двойного аргумента.
  • Формулы половинного аргумента.

V. Применение тригонометрических формул к преобразованию выражений.

а) Один учащийся выполняет задание на обороте доски, остальные с места проверяют и поднимают сигнальные карточки (верно – “+”, неверно – “- “) с места.

Выбрать ответ.

Упростить выражение 7 cos - 5.

а) 1+cos; б) 2; в) –12; г) 12

Упростить выражение 5 – 4 si n

а) 1; б) 9; в) 1+8sin; г) 1+cos.

Тригонометрия в медицине

Руководитель: Козлова Людмила Васильевна

Цель работы: Изучить использование тригонометрии в медицине. После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Данная работа рассказывает, в каких именно сферах медицины применяются знания по тригонометрии. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

ВВЕДЕНИЕ

Актуальность: Впервые с тригонометрией я столкнулась в восьмом классе, когда мы начали изучать азы этого раздела математики. Простейшие правила определения синуса и косинуса показались мне очень легкими, поэтому не вызвали особого интереса. Позднее, когда я начала учиться в десятом классе, то было ясно сразу, что тригонометрия- это огромный раздел математики, объединяющий большое количество знаний и теории. В дальнейшем я выяснила, что знания о тригонометрии очень универсальные для всех областей деятельности. Они имеют широкое применение в астрономии, географии, теории музыки, анализ финансовых рынков, электроники, теории вероятности, статистике, биологии, медицине, фармацевтики, химии, криптографии и многие другие.

Тригономе́трия (от греч. τρίγωνον (треугольник) и греч. μέτρεο (меряю), то есть измерение треугольников) - раздел математики, в котором изучаются тригонометрические функции и их использование в геометрии.

Термин «тригонометрия» ввел в употребление в 1595 немецкий математик и богослов Варфоломей Питиск, автор учебника по тригонометрии и тригонометрических таблиц. К концу 16 в. большинство тригонометрических функций было уже известно, хотя само это понятия еще не существовало.

Ученые обрабатывали данные измерений, чтобы вести календарь и правильно определять время начала сева и сбора урожая, даты религиозных праздников. По звездам вычисляли местонахождение корабля в море или направление движения каравана в пустыне. Как известно, тригонометрия применяется не только в математике, но и в других сферах науки. Данная работа рассказывает, в каких именно сферах медицины применяются знания по геометрии.

Одно из главных применений - кардиология. Аппараты ЭКГ снимают кардиограмму у людей, фиксируя удары сердца. После общения со специалистом по чтению графиков электрокардиограммы я выяснила, что график является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения.

ОСНОВНОЕ СОДЕРЖАНИЕ

ЦЕЛЬ: Изучить использование тригонометрии в медицине.

ЗАДАЧИ:

    Изучить историю тригонометрии.

    Выяснить, в каких сферах медицины применяется тригонометрия.

    Выполнить практическую часть работы, выяснить принцип, на который опираются врачи-кардиологи, читая график электрокардиограммы.

1.2.ИСТОРИЯ

Первые тригонометрические таблицы видимо были составлены Гиппархом, который сейчас известен как «отец тригонометрии».

Древнегреческие математики в своих построениях, связанных с измерением дуг круга, использовали технику хорд. Перпендикуляр к хорде, опущенный из центра окружности, делит пополам дугу и опирающуюся на неё хорду. Половина поделенной пополам хорды - это синус половинного угла, и поэтому функция синус известна также как «половина хорды». Для компенсации отсутствия таблицы хорд математики, времен Аристарха, иногда использовали хорошо известную теорему, в современной записи -

где 0° < β < α < 90°,

Первые тригонометрические таблицы были, вероятно, составлены Гиппархом Никейским (180-125 лет до н. э.). Гиппарх был первым, кто свёл в таблицы соответствующие величины дуг и хорд для серии углов. Систематическое использование полной окружности в 360° установилось в основном благодаря Гиппарху.

Позднее Клавдий Птолемей (90 - 168 г. н. э.) в «Альмагесте» расширил Гиппарховы «Хорды в окружности». Тринадцать книг «Альмагеста» - самая значимая тригонометрическая работа всей античности. Позже Птолемей вывел формулу половинного угла. Птолемей использовал эти результаты для создания своих тригонометрических таблиц, которые не сохранились до наших дней.

Замена хорд синусами стала главным достижением средневековой Индии. С VIII века учёные стран Ближнего и Среднего Востока развили тригонометрию. После того как трактаты мусульманских ученых были переведены на латынь, многие идеи стали достоянием европейской и мировой науки.

2. ТРИГОНОМЕТРИЯ В МЕДИЦИНЕ

2.1.БИОРИТМЫ

Биоритмы - периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации- от молекулярных до биосферы. Одни биологические ритмы относительно самостоятельны (частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (колебания интенсивности деления клеток, обмена веществ) .

Человек со дня рождения находится в трех , биоритмах : физическом, эмоциональном и интеллектуальном.

    Физический цикл равен 23 дням. Он определяет энергию человека, его силу, выносливость, координацию движения.

    Эмоциональный цикл (28 дня) обусловливает состояние нервной системы и настроение.

    Интеллектуальный цикл (33 дня) определяет творческую способность личности.

Любой из циклов состоит из двух полупериодов, положительного и отрицательного.

    В течение первой половины физического цикла человек энергичен и достигает лучших результатов в своей деятельности; во второй половине цикла энергичность уступает лености.

    В первой половине эмоционального цикла человек весел, агрессивен, оптимистичен, переоценивает свои возможности, во второй половине - раздражителен, легко возбудим, недооценивает свои возможности, пессимистичен, все критически анализирует.


Рис.1. Биоритмы

Модель биоритмов строят с помощью графиков тригонометрических функций. В интернете находится огромное количество сайтов, которые занимаются расчетом биоритмов. Для этого необходимо ввести дату рождения человека (день, месяц, год) и длительность прогноза.

2.2. ФОРМУЛА СЕРДЦА

В результате исследования, проведенного студентом иранского университета Шираз Вахидом-Резой Аббаси, медики впервые получили возможность упорядочить информацию, относящуюся к электрокардиографии.

Формула, получившая название тегеранской, представляет собой комплексное алгебраически-тригонометрическое равенство, состоящее из 8 выражений, 32 коэффициентов и 33 основных параметров, включая несколько дополнительных для расчетов в случаях аритмии. Как утверждают медики, эта формула в значительной степени облегчает процесс описания основных параметров деятельности сердца, ускоряя, постановку диагноза и начало лечения .

На данный момент не известна точная информация касающегося вопроса, ведутся активные работы и исследования по данной теме.

Российские ученые вывели математическую формулу сердца. Благодаря этим уравнениям можно высчитать, спрогнозировать и предотвратить любое сердечное заболевание. Единственная в России лаборатория математической физиологии действует при Екатеринбургском Институте иммунологии и физиологии.

Проблема математических описаний физиологических функций организма – вторая по значимости проблема после проблемы ДНК человека. В будущем будут вычислены формулы других органов человека, и медики с помощью элементарных уравнений смогут прогнозировать и лечить любую болезнь.

Человек - сложнейший механизм, в котором непрерывно происходят физические и химические процессы. Если все процессы, перевести на язык уравнений, то можно будет вывести единую формулу человека.

Математики создали модель сердечной мышцы, которую биологи виртуально соединили с настоящей живой тканью. В компьютерной программе ученые задают сердцу различные нагрузки и наблюдают, как оно ведет себя. Изучив всевозможные алгоритмы, имитирующие деятельность сердца, ученые смогут делать реальные прогнозы.

2. 3. ЭЛЕКТРОКАРДИОГРАММА

Примененный в практических целях в 70-х годах 19 века англичанином А.Уоллером аппарат, записывающий электрическую активность сердца, продолжает служить человеку и по сей день. Электрокардиограф позволяет выявить явные отклонения от нормального ритма сердца, такие как Инфаркт миокарда, Ийшемическая болезнь сердца, синусовая брадикардия, тахекардия,аритмия, синдром слабости синусового узла и т.п. Как же отличить нормальные снимки ЭКГ от ярко выраженных заболеваний?.

3.ПРАКТИЧЕСКАЯ ЧАСТЬ РАБОТЫ

После того, как мне удалось пообщаться со специалистом расшифровки кардиограммы в нашей больнице, я узнала множество полезной информации для моей исследовательской работы.

График электрокардиограммы является измененной синусоидой. И здесь важна каждая неровность графика. Количество интервалов и зубцов, максимум и минимум скачков, протяженность периодов: все это играет важную роль в определении диагноза и правильности лечения. Поэтому график ЭКГ всегда печатается на миллиметровой бумаге.

При расшифровке результатов ЭКГ проводят измерение продолжительности интервалов между ее составляющими. Этот расчет необходим для оценки частоты ритма, где форма и величина зубцов в разных отведениях будет показателем характера ритма, происходящих электрических явления в сердце и электрической активности отдельных участков миокарда, то есть, электрокардиограмма показывает, как работает наше сердце в тот или иной период.

Более строгая расшифровка ЭКГ производиться с помощью анализа и расчета площади зубцов при использовании специальных отведений, однако в практике, обходятся показателем направления электрической оси, которая представляет собой суммарный вектор.

Существуют разные способы расшифровки ЭКГ. Некоторые специалисты основываются на формулы и рассчитывают все по ним; так частоту сердечных сокращений можно вычислить по формуле: где R - R длительность интервала, а некоторые пользуются готовыми данными, что тоже не запрещает отечественная медицина. На рисунке 2 представлены результаты расчетов ЧСС в зависимости от интервала.


Рис.2

Рис.2. Оценка ЧЧС

Рис.3. Виды кардиограмм

На рис.3 представлены три вида кардиограммы. Первая кардиограмма здорового человека, вторая, того же человека, только с синусовой тахикардией, после физической нагрузки, а третья кардиограмма больного человека с синусовой аритмией.

ВЫВОД:

После проделанной работы, я изучила использование тригонометрии в медицине: составление биоритмов человека, кардиологии. Она дает основу для составлений формул органов человека, что впоследствии поможет лечить любые заболевания. Благодаря этой работе я выяснила основные принципы чтения электрокардиограммы и самостоятельно смогу отличить нормальный результат обследования, от ярких отклонений.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

    Электрокардиография: Учебн. пособие. -5-е издание. – М.: МЕДпресс-информ, 2001. – 312с., ил.

    Интернет источники: Анатомия коронального клапана/Профессор, доктор мед. наук Ю.П. Островский

align=center>

Тригонометрия - микрораздел математики, в котором изучаются зависимости между величинами углов и длинами сторон треугольников, а также алгебраические тождества тригонометрических функций.
Существует множество областей, в которых применяются тригонометрия и тригонометрические функции. Тригонометрия или тригонометрические функции используются в астрономии, в морской и воздушной навигации, в акустике, в оптике, в электронике, в архитектуре и в других областях.

История создания тригонометрии

История тригонометрии, как науки о соотношениях между углами и сторонами треугольника и других геометрических фигур, охватывает более двух тысячелетий. Большинство таких соотношений нельзя выразить с помощью обычных алгебраических операций, и поэтому понадобилось ввести особые тригонометрические функции, первоначально оформлявшиеся в виде числовых таблиц.
Историки полагают, что тригонометрию создали древние астрономы, немного позднее её стали использовать в архитектуре. Со временем область применения тригонометрии постоянно расширялась, в наши дни она включает практически все естественные науки, технику и ряд других областей деятельности.

Ранние века

От вавилонской математики ведёт начало привычное нам измерение углов градусами, минутами и секундами (введение этих единиц в древнегреческую математику обычно приписывают , II век до н. э.).

Главным достижением этого периода стало соотношение катетов и гипотенузы в прямоугольном треугольнике, позже получившее имя теоремы Пифагора .

Древняя Греция

Общее и логически связное изложение тригонометрических соотношений появилось в древнегреческой геометрии. Греческие математики ещё не выделяли тригонометрию как отдельную науку, для них она была частью астрономии.
Основным достижением античной тригонометрической теории стало решение в общем виде задачи «решения треугольников», то есть нахождения неизвестных элементов треугольника, исходя из трёх заданных его элементов (из которых хотя бы один является стороной).
Прикладные тригонометрические задачи отличаются большим разнообразием - например, могут быть заданы измеримые на практике результаты действий над перечисленными величинами (к примеру, сумма углов или отношение длин сторон).
Параллельно с развитием тригонометрии плоскости греки, под влиянием астрономии, далеко продвинули сферическую тригонометрию. В «Началах» Евклида на эту тему имеется только теорема об отношении объёмов шаров разного диаметра, но потребности астрономии и картографии вызвали быстрое развитие сферической тригонометрии и смежных с ней областей - системы небесных координат, теории картографических проекций, технологии астрономических приборов.

Средневековье

В IV веке, после гибели античной науки, центр развития математики переместился в Индию. Они изменили некоторые концепции тригонометрии, приблизив их к современным: к примеру, они первыми ввели в использование косинус.

Первым специализированным трактатом по тригонометрии было сочинение среднеазиатского учёного (X-XI век) «Книга ключей науки астрономии» (995-996 годы). Целый курс тригонометрии содержал главный труд Аль-Бируни - «Канон Мас‘уда» (книга III). В дополнение к таблицам синусов (с шагом 15") Аль-Бируни дал таблицы тангенсов (с шагом 1°).

После того как арабские трактаты были в XII-XIII веках переведены на латынь, многие идеи индийских и персидских математиков стали достоянием европейской науки. По всей видимости, первое знакомство европейцев с тригонометрией состоялось благодаря зиджу , два перевода которого были выполнены в XII веке.

Первым европейским сочинением, целиком посвященным тригонометрии, часто называют «Четыре трактата о прямых и обращенных хордах» английского астронома Ричарда Уоллингфордского (около 1320 г.). Тригонометрические таблицы, чаще переводные с арабского, но иногда и оригинальные, содержатся в сочинениях ряда других авторов XIV-XV веков. Тогда же тригонометрия заняла место среди университетских курсов.

Новое время

Развитие тригонометрии в Новое время стало чрезвычайно важным не только для астрономии и астрологии, но и для других приложений, в первую очередь артиллерии, оптики и навигации при дальних морских путешествиях. Поэтому после XVI века этой темой занимались многие выдающиеся учёные, в том числе Николай Коперник , Иоганн Кеплер , Франсуа Виет . Коперник посвятил тригонометрии две главы в своём трактате «О вращении небесных сфер» (1543). Вскоре (1551) появились 15-значные тригонометрические таблицы Ретика , ученика Коперника. Кеплер опубликовал труд «Оптическая часть астрономии» (1604).

Виет в первой части своего «Математического канона» (1579) поместил разнообразные таблицы, в том числе тригонометрические, а во второй части дал обстоятельное и систематическое, хотя и без доказательств, изложение плоской и сферической тригонометрии. В 1593 году Виет подготовил расширенное издание этого капитального труда.
Благодаря трудам Альбрехта Дюрера , на свет появилась синусоида.

XVIII век

Современный вид тригонометрии придал . В трактате «Введение в анализ бесконечных» (1748) Эйлер дал определение тригонометрических функций, эквивалентное современному, и соответственно определил обратные функции.

Эйлер рассматривал как допустимые отрицательные углы и углы, большие 360°, что позволило определить тригонометрические функции на всей вещественной числовой прямой, а затем продолжить их на комплексную плоскость. Когда встал вопрос о распространении тригонометрических функций на тупые углы, знаки этих функций до Эйлера нередко выбирались ошибочно; многие математики считали, например, косинус и тангенс тупого угла положительными. Эйлер определил эти знаки для углов в разных координатных квадрантах, исходя из формул приведения.
Общей теорией тригонометрических рядов Эйлер не занимался и сходимость полученных рядов не исследовал, но получил несколько важных результатов. В частности, он вывел разложения целых степеней синуса и косинуса.

Применение тригонометрии

По своему правы те, кто говорит, что тригонометрия в реальной жизни не нужна. Ну, каковы ее обычные прикладные задачи? Измерять расстояние между недоступными объектами.
Большое значение имеет техника триангуляции, позволяющая измерять расстояния до недалёких звёзд в астрономии, между ориентирами в географии, контролировать системы навигации спутников. Также следует отметить применение тригонометрии в таких областях, как техника навигации, теория музыки, акустика, оптика, анализ финансовых рынков, электроника, теория вероятностей, статистика, биология, медицина (включая ультразвуковое исследование (УЗИ) и компьютерную томографию), фармацевтика, химия, теория чисел (и, как следствие, криптография), сейсмология, метеорология, океанология, картография, многие разделы физики, топография и геодезия, архитектура, фонетика, экономика, электронная техника, машиностроение, компьютерная графика, кристаллография и т.д.
Вывод: тригонометрия - огромная помощница в нашей повседневной жизни.

Другие разделы

Слово «тригонометрия» впервые встречается (1505 г.) в заглавии книги немецкого теолога и математика Питискуса. Происхождение этого слова греческое: xpiyrovov - треугольник, цетресо - мера. Иными словами, тригонометрия - наука об измерении треугольников. Хотя название возникло сравнительно недавно, многие относимые сейчас к тригонометрии понятия и факты были известны уже две тысячи лет назад.

Длительную историю имеет понятие
синуса. Фактически различные отношения отрезков треугольника и окружности (а по существу, и тригонометрические функции) встречаются уже в III в. до н. э. в работах великих математиков Древней Греции - Евклида, Архимеда, Аполлония Пергского. В римский период эти отношения уже достаточно систематично исследовались Менелаем (1в. н.э.), хотя и не приобрели специального названия.

В последующий период математика долгое время наиболее активно развивалась индийскими и арабскими учеными. В IV-V вв. появился, в частности, уже специальный термин в трудах по астрономии великого индийского ученого Ариабхаты (476 - ок. 550), именем которого назван первый индийский спутник Земли. Отрезок он назвал ардхаджива
.

Позднее привилось более краткое название джива. Арабскими математиками в IX в. слово джива (или джиба) было заменено на арабское слово джайб (выпуклость). При переводе арабских математических текстов в XII в. это слово было заменено латинским
синус (sinus - изгиб, кривизна).

Слово косинус намного моложе.
Косинус - это сокращение латинского выражения complementy sinus, т. е. «дополнительный синус» (или иначе «синус дополнительной дуги»; вспомните cos а = sin (90° - а)).

Тангенсы возникли в связи с решением задачи об определении длины тени. Тангенс (а также котангенс, секанс и косеканс) введен в X в. арабским математиком Абул-Вафой, который составил и первые таблицы для нахождения тангенсов и котангенсов. Однако эти открытия долгое время оставались неизвестными европейским ученым, и тангенсы были заново открыты в XIV в. сначала английским ученым Т. Бравердином, а позднее немецким математиком, астрономом Региомонтаном (1467 г.). 

Название «тангенс», происходящее от латинского tanger (касаться), появилось в 1583 г. Tangens переводится как «касающийся» (линия тангенсов - это касательная к единичной окружности).


Современные обозначения
arcsin и arctg появляются в 1772 г. в работах венского математика Шерфера и известного французского ученого Лагранжа, хотя несколько ранее их уже рассматривал Я. Бернулли, который употреблял иную символику. Но общепринятыми эти символы стали лишь в конце XVIII столетия. Приставка «арк» происходит от латинского arcus (лук, дуга), что вполне согласуется со смыслом понятия: arcsin х, например, - это угол (а можно сказать, и дуга), синус которого равен х.

Длительное время тригонометрия развивалась как часть геометрии
. Пожалуй, наибольшие стимулы к развитию тригонометрии возникали в связи с решением задач астрономии, что представляло большой практический интерес (например, для решения задач определения местонахождения судна, предсказания затмений и т. д.).

Астрономов интересовали соотношения между сторонами и углами сферических треугольников, составленных из больших кругов, лежащих на сфере.


Во всяком случае в геометрической форме многие формулы тригонометрии открывались и переоткрывались древнегреческими, индийскими, арабскими математиками. (Правда, формулы разности тригонометрических функций стали известны только в XVII в.- их вывел английский математик Непер для упрощения вычислений с тригонометрическими функциями. А первый рисунок синусоиды появился в 1634 г.)


Принципиальное значение имело составление К. Птолемеем первой таблицы синусов (долгое время она называлась таблицей хорд): появилось практическое средство решения ряда прикладных задач, и в первую очередь задач астрономии.


Современный вид тригонометрии придал крупнейший математик XVIII столетия Л . Эйлер (1707-1783), швейцарец по происхождению, долгие годы работавший в России и являвшийся членом Петербургской Академии наук. Именно Эйлер первым ввел известные определения тригонометрических функций, стал рассматривать функции произвольного угла, получил формулы приведения. Все это малая доля того, что за долгую жизнь Эйлер успел сделать в математике: он оставил свыше 800 работ, доказал многие ставшие классическими теоремы, относящиеся к самым разным областям математики. (Несмотря на то что в 1776 г. Эйлер потерял зрение, он до последних дней продолжал диктовать все новые и новые работы.)

После Эйлера тригонометрия приобрела форму исчисления: различные факты стали доказываться путем формального применения формул тригонометрии, доказательства стали намного компактнее, проще.

Область применения тригонометрии охватывает самые разные сферы математики, некоторые разделы естествознания и техники.

Тригонометрия имеет несколько разновидностей:

    Сферическая тригонометрия занимается изучением сферических треугольников.

    Прямолинейная или плоская тригонометрия изучает обычнее треугольники.


Значительно развили тригонометрию древнегреческие и эллинистические ученые. Однако в работах Евклида и Архимеда тригонометрия представлена в геометрическом виде. Теоремы о длине хорд применяются в законах синусов. А теорема Архимеда для деления хорд соответствует формулам для синусов суммы и разности углов.

В настоящее время математики используют новую запись известных теорем, например, sin α/ sin β < α/β < tan α/ tan β, где 0° < β < α < 90°, тем самым, компенсируют недостатки таблиц хорд, времен Аристарха Самосского.

Предположительно первые тригонометрические таблицы были составлены Гиппархом Никейским , которого по праву считают «отцом тригонометрии». Ему принадлежит заслуга в создании сводной таблицы величин дуг и хорд для серии углов. Более того именно Гиппарх Никейский впервые стал использовать 360° окружности.

Клавдий Птолемей значительно развил и расширил учение Гиппарха. Теорема Птолемея гласит: сумма произведений противоположных сторон циклического четырехугольника равна произведению диагоналей. Следствием теоремы Птолемея стало понимание эквивалентности четырех формул суммы и разности для синуса и косинуса. Кроме того, Птолемей вывел формулу половинного угла. Все свои результаты Птолемей использовал при составлении тригонометрических таблиц. К сожалению, ни одной подлинной тригонометрической таблицы Гиппарха и Птолемея не сохранилось до наших дней.

Тригонометрические вычисления нашли свое применение почти во всех областях геометрии, физики и инженерного дела.
С помощью тригонометрии (техника триангуляции) можно измерять расстояния между звездами, между ориентирами в географии, производить контроль над системами навигации спутников.


Тригонометрия успешно применяется в технике навигации, теории музыки, акустике, оптике, при анализе финансовых рынков, электронике, теории вероятности, статистике, биологии и медицине, химии и теории чисел (криптографии), сейсмологии, метеорологии, океанологии, картографии, топографии и геодезии, архитектуре и фонетике, машиностроении и компьютерной график
е .