Принципиальная схема телескопа. Виды телескопов и их особенности

Наблюдения являются фундаментальными измерениями астрономии как науки. Они сопоставляются с данными и теориями, полученными в лабораториях астрофизиками и другими учеными-физиками для проверки доказуемых предсказаний.

Астрономы находятся в уникальном положении среди ученых, поскольку они не могут проводить эксперименты непосредственно на предметах своих исследований. Астрономы должны ждать фотонов (теперь и других форм неэлектромагнитного излучения), чтобы эти излучения прошли через Вселенную к Земле и человек увидел их с помощью одного из устройств.

Ключ к совершению открытий – наличие соответствующего телескопа в соответствующем месте, чтобы засвидетельствовать эти фотоны и историю их появления.

На протяжении большей части человеческой истории астрономические наблюдения проводились за пределами того, что можно увидеть с помощью глаз.
Некоторые базовые знания, какие бывают телескопы для фундаментальной астрономии или для личного наблюдения будут рассмотрены в этой статье. Подробная информация про эти устройства сконцентрирована на https://www.4glaza.ru/katalog/teleskopy/veber/

Уникальность инструмента для наблюдения небесных объектов

В течение многих лет телескопы использовались для наблюдения небесных объектов. Эти приборы за наблюдением удаленных объектов изменили наше понимание и знания про объекты во Вселенной. Учеными и инженерами проводятся новые разработки, основанные на измерении параметров длины волны, пришедшей с небесных объектов, с улучшенной технологией создания многих видов телескопов.

Существуют различные виды этого инструмента от бытовых оптических изготавливаемых компанией Veber до сложнейших рентгеновских изготавливаемых в интересах управления по аэронавтике и исследованию космического пространства NASA, Европейского космического агентства ESA или Российского Роскосмоса. Изучение различных стадий звезд в деталях может быть сделано с помощью этих приборов, которые используются для конкретных целей.

Эта статья будет касаться вопроса какие бывают телескопы, а также функции и их предназначения для анализа сигналов нашей Вселенной.

История

С семнадцатого века устройства за наблюдениями за небом стали одним из важных инструментов для выявления неожиданных явлений во Вселенной.

Противоречие между традиционной геоцентрической астрономией и теми, кто предпочитал гелиоцентрическую систему Коперника, оказало большое влияние на открытие телескопа.

Первоначально изобретение телескопа было прототипом современных научных приборов, а не изобретением ученых. Прибор дал людям возможность наблюдать вещи, которые человечество никогда не видело прежде, увеличивая человеческие чувства и знание объектов в космическом пространстве. Мастера создали инструмент, который мы называем телескопом. Использование выпуклых и вогнутых объектов для увеличения и уменьшения было известно с древности.

На Западе в конце тринадцатого века линзы стали популярными. Галилей был первым, кто использовал рефракционный прибор в качестве инструмента для наблюдения планет, лун и звезд в 1609 году. Галилей употребил греческий термин “теле” как далеко и “скопейн” как смотреть, для названия инструментов для наблюдения за небом. Галилей доказал, что предсказанная гелиоцентрическая модель Солнечной системы была правильной. Он продемонстрировал, что Венера показала полный набор фаз, подобных Луне. Открытие Галилея также доказало, что модель Птолемея была невозможна из его наблюдений.

Открытия Галилея изменили наше понимание Вселенной благодаря его наблюдениям, сделанным с помощью телескопа. Кроме того новые объекты в небе были обнаружены, когда Галилей использовал оптический инструмент, чтобы доказать гелиоцентрический вид.

Типы телескопов

Длины волн или электромагнитного излучения от объектов Вселенной отличаются. Поэтому приборы за наблюдением удаленных объектов классифицируются по конструкции. Они бывают оптического, рентгеновского, инфракрасного диапазонов, а также радиотелескопы.

Оптические

Оптические телескопы являются наиболее распространенными, поскольку они в основном используются для наблюдения удаленных объектов с видимой частью электромагнитного спектра видимого света. Поскольку видимый свет можно наблюдать с Земли, большинство оптических телескопов могут быть установлены на земле.

Некоторые атмосферные искажения могут привести к тому, что наблюдения не будут точными для профессионалов.

Рентгеновские

Излучение от удаленных объектов и более коротких длин волн обнаруживаются с помощью рентгеновских телескопов которые расположены на космических аппаратах. Их расположение на космических аппаратах связано с те, что атмосфера непрозрачна и поэтому блокирует любые гамма-лучи, рентгеновские лучи, а ультрафиолетовый свет можно использовать только в космосе, поэтому нет рентгеновских телескопов расположенных на земле.

Радиотелескопы

Другими распространенными типами телескопов, которые могут быть установлены на Земле, являются радиотелескопы, которые используются для радиоастрономии. Поскольку они могут принимать радиоволны от Вселенной антенны открыты и относительно большие. Поскольку атмосфера не блокирует радиоволны, радиотелескоп не нужно устанавливать над атмосферой Земли. Радиотелескоп может использоваться для наблюдения таких объектов, как квазары. Чтобы определить космологическое красное смещение можно изучать квазары и галактики с помощью спектроскопии. Это помогает отображать структуру Вселенной, потому что красное смещение пропорционально расстоянию.

Оптические и радиотелескопы часто расположены в горах или за пределами городской черты, поскольку электромагнитное и световое загрязнение от городов может повлиять на результат наблюдений.

Так, например, чтобы не влияли помехи на наблюдение используемое радиотелескопами в гористой местности штата Нью-Мексико, США построено очень много радиотелескопов, которые используются, в основном, для наблюдения протопланетных дисков вокруг молодых звезд и черных дыр. Этот комплекс для наблюдения Вселенной специально был создан за пределами городов, чтобы избежать влияние во время наблюдения при исследовании многих астрономических объектов.

Телескопы на спутниках

Ученые использовали наземные телескопы, чтобы увидеть видимый свет и радиоволны от звезды.
Для изучения Вселенной на всех длинах волн и без размытия и затемнения атмосферы Земли ученые используют спутники с телескопами.

Многие объекты, находящиеся на разных стадиях развития во Вселенной излучают электромагнитные волны, поэтому телескопы различных типов могут предоставлять снимки этих объектов. Ученые могут изучать радиоволны от молодых звезд, чтобы увидеть рождение звезд или смерть звезд, когда используются рентгеновские аппараты, потому что эти звезды часто излучают рентгеновские лучи. Наземные комплексы в этом диапазоне вносят искажения изображений, и при этом невозможно изучать крупномасштабные изображения галактик.

Космическая обсерватория Хаббл с 1991 года является еще одним типичным примером, который может глубоко изучать область неба, чтобы выявить галактики на ранних стадиях их эволюции. Он может собирать более точные и детальные изображения без отсутствия атмосферных искажений.

Другим примером является космическая обсерватория Чандра NASA с 1999 года. С помощью спутниковой обсерватории Чандра составлена карта горячего газа в скоплениях галактик и проводятся исследования черных дыр по всей Вселенной.

Обсерватория Чандра предоставила детальное исследование рентгеновского неба. С помощью этих данных проводится изучение темной энергии и темной материи. Поскольку темные энергия и материя не испускают никакого излучения, устройства наблюдения могут только частично помочь в изучении, потому что они не могут непосредственно наблюдать темные составляющие Вселенной. Для изучения этих объектов ученые построили ряд новых детекторов. Изучение темной энергии и темной материи может быть возможно путем объединения этих новых детекторов в сочетании с телескопами.

Выводы

В выводах какие бывают телескопы можно отметить различные типы этого инструмента, обеспечивающие многочисленные способы изучения звезд, планет и объектов во Вселенной.

Бывают телескопы от недорогих домашних бренда Veber до сложнейших космического базирования.

Различные виды телескопов были разработаны для наблюдения звезд в различных длинах волн по всей Вселенной. Телескопы бывают различны по функциональному применению в астрономии, хотя некоторые объекты, как темная энергия и темная материя не могут быть непосредственно наблюдаемы. Новые технологии в будущем создадут лучшие устройства и инструменты для ученых, чтобы обнаружить неизвестные объекты в нашей Вселенной.

Таким образом, представлено резюме какие бывают телескопы для исследований и открытий во Вселенной для настоящих и будущих поколений.

Телескопы - типы и устройство.

Основное назначение телескопов - собрать как можно больше излучения от небесного тела. Это позволяет видеть неяркие объекты. Во вторую очередь телескопы служат для рассматривания объектов под большим углом или, как говорят, для увеличения. Разрешение мелких деталей – третье предназначение телескопов. Количество собираемого ими света и доступное разрешение деталей сильно зависит от площади главной детали телескопа - его объектива. Объективы бывают зеркальными и линзовыми.

Линзовые телескопы.

Линзы, так или иначе, всегда используются в телескопе. Но в телескопах-рефракторах линзой является главная деталь телескопа – его объектив. Вспомним, что рефракция – это преломление. Линзовый объектив преломляет лучи света, и собирает их в точке, именуемой фокусом объектива. В этой точке строится изображение объекта изучения. Чтобы его рассмотреть используют вторую линзу – окуляр. Она размещается так, чтобы фокусы окуляра и объектива совпадали. Так как зрение у людей разное, то окуляр делают подвижным, чтобы было возможно добиться четкого изображения. Мы это называем настройкой резкости. Все телескопы обладают неприятными особенностями - аберрациями. Аберрации – это искажения, которые получаются при прохождении света через оптическую систему телескопа. Главные аберрации связаны с неидеальностью объектива. Линзовые телескопы (да и телескопы вообще) грешат несколькими аберрациями. Назовем лишь две из них. Первая связана с тем, что лучи разных длин волн преломляются чуть по-разному. Из-за этого для синих лучей существует один фокус, а для красных – другой, расположенный дальше от объектива. Лучи других длин волн собираются каждый в своем месте между этими двумя фокусами. В результате мы видим окрашенные в радугу изображения объектов. Такая аберрация называется хроматической. Второй сильной аберрацией является аберрация сферическая. Она связана с тем, что объектив, поверхностью которого является часть сферы, на самом деле, не собирает все лучи в одной точке. Лучи идущие на разных расстояниях от центра объектива собираются в разных точках, из-за чего изображение получается нечетким. Этой аберрации не было бы, если бы объектив имел поверхность параболоида, но такую деталь сложно изготовить. Чтобы уменьшить аберрации изготавливают сложные, вовсе не двухлинзовые системы. Дополнительные части вводятся для исправления аберраций объектива. Давно держащий первенство среди линзовых телескопов - телескоп Йеркской обсерватории с объективом 102 сантиметра диаметром.

Зеркальные телескопы.

У простых зеркальных телескопов, телескопов-рефлекторов, объектив - это сферическое зеркало, которое собирает световые лучи и отражает их с помощью дополнительного зеркала в сторону окуляра - линзы, в фокусе которой строится изображение. Рефлекс – это отражение. Зеркальные телескопы не грешат хроматической аберрацией, так как свет в объективе не преломляется. Зато у рефлекторов сильнее выражена сферическая аберрация, которая, кстати говоря, сильно ограничивает поле зрения телескопа. В зеркальных телескопах так же используются сложные конструкции, поверхности зеркал, отличные от сферических и прочее.

Зеркальные телескопы изготавливать легче и дешевле. Именно поэтому их производство в последние десятилетия бурно развивается, в то время как новых крупных линзовых телескопов уже очень давно не делают. Самый большой зеркальный телескоп имеет сложный объектив из нескольких зеркал, эквивалентный целому зеркалу диаметром 11 метров. Самый большой монолитный зеркальный объектив имеет размер чуть больше 8-ми метров. Самым большим оптическим телескопом России является 6-ти метровый зеркальный телескоп БТА (Большой Телескоп Азимутальный). Телескоп долгое время был наикрупнейшим в мире.

Характеристики телескопов.

Увеличение телескопа . Увеличение телескопа равно отношению фокусных расстояний объектива и окуляра. Если, скажем, фокусное расстояние объектива два метра, а окуляра – 5 см, то увеличение такого телескопа будет 40 крат. Если поменять окуляр, можно изменить и увеличение. Так астрономы и поступают, ведь не менять же, в самом деле, огромный объектив?!

Выходной зрачок . Изображение, которое строит для глаза окуляр, может в общем случае быть как больше глазного зрачка, так и меньше. Если изображение больше, то часть света в глаз не попадет, тем самым, телескоп будет использоваться не на все 100%. Это изображение называют выходным зрачком и рассчитывают по формуле: p=D:W, где p – выходной зрачок, D – диаметр объектива, а W – увеличение телескопа с данным окуляром. Если принять размер глазного зрачка равным 5 мм, то легко рассчитать минимальное увеличение, которое разумно использовать с данным объективом телескопа. Получим этот предел для объектива в 15 см: 30 крат.

Разрешение телескопов

В виду того что, свет – это волна, а волнам свойственно не только преломление, но и дифракция, никакой даже самый совершенный телескоп не дает изображение точечной звезды в виде точки. Идеальное изображение звезды выглядит в виде диска с несколькими концентрическими (с общим центром) кольцами, которые называют дифракционными. Размером дифракционного диска и ограничивается разрешение телескопа. Все, что закрывает собою этот диск, в данный телескоп никак не увидишь. Угловой размер дифракционного диска в секундах дуги для данного телескопа определяется из простого соотношения: r=14/D, где диаметр D объектива измеряется в сантиметрах. Упомянутый чуть выше пятнадцатисантиметровый телескоп имеет предельное разрешение чуть меньше секунды. Из формулы следует, что разрешение телескопа всецело зависит от диаметра его объектива. Вот еще одна причина строительства как можно более грандиозных телескопов.

Относительное отверстие . Отношение диаметра объектива к его фокусному расстоянию называется относительным отверстием. Этот параметр определяет светосилу телескопа, т. е., грубо говоря, его способность отображать объекты яркими. Объективы с относительным отверстием 1:2 – 1:6 называют светосильными. Их используют для фотографирования слабых по яркости объектов, таких, как туманности.

Телескоп без глаза.

Одной из самых ненадежных деталей телескопа всегда был глаз наблюдателя. У каждого человека - свой глаз, со своими особенностями. Один глаз видит больше, другой - меньше. Каждый глаз по-разному видит цвета. Глаз человека и его память не способны сохранить всю картину, предлагаемую для созерцания телескопом. Поэтому, как только стало возможным, астрономы стали заменять глаз приборами. Если подсоиденить вместо окуляра фотоаппарат, то изображение, получаемое объективом можно запечатлеть на фотопластине или фотопленке. Фотопластина способна накапливать световое излучение, и в этом ее неоспоримое и важное преимущество перед человеческим глазом. Фотографии с большой выдержкой способны отобразить несравненно больше, чем под силу рассмотреть человеку в тот же самый телескоп. Ну и конечно, фотография останется как документ, к которому неоднократно можно будет в последствии обратиться. Еще более современным средством являются ПЗС - камеры с полярно-зарядовой связью. Это светочувствительные микросхемы, которые подменяют собой фотопластину и передают накапливаемую информацию на ЭВМ, после чего могут делать новый снимок. Спектры звезд и других объектов исследуются с помощью присоединенных к телескопу спектрографов и спектрометров. Ни один глаз не способен так четко различать цвета и измерять расстояния между линиями в спектре, как это с легкостью делают названные приборы, которые еще и сохранят изображение спектра и его характеристики для последующих исследований. Наконец, ни один человек не сможет посмотреть одним глазом в два телескопа одновременно. Современные системы из двух и более телескопов, объединенных одной ЭВМ и разнесенных, порой на расстояния в десятки метров, позволяют добиться потрясающе высоких разрешений. Такие системы называют интерферометрами. Пример системы из 4-х телескопов - VLT. Целых четыре вида телескопов мы объединили в один подраздел неслучайно. Земная атмосфера пропускает соответствующие длины электромагнитных волн неохотно, поэтому телескопы для изучения неба в этих диапазонах стремятся вынести в космос. Именно с развитием космонавтики напрямую связано развитие ультрафиолетовой, рентгеновской, гамма и инфракрасной отраслей астрономии.

Радиотелескопы.

В качестве объектива радиотелескопа чаще всего выступает металлическая чаша параболоидной формы. Собранный ею сигнал принимается антенной, находящейся в фокусе объектива. Антенна связана с ЭВМ, которая обычно и обрабатывает всю информацию, строя изображения в условных цветах. Радиотелескоп, как и радиоприемник, способен одновременно принимать только какую-то длину волны. В книге Б. А. Воронцова-Вельяминова «Очерки о Вселенной» есть очень интересная иллюстрация, напрямую связанная с предметом нашего разговора. В одной обсерватории гостям предлагали подойти к столу и взять с него листок бумаги. Человек брал листок и на обороте читал примерно следующее: «Взяв этот листок бумаги, Вы затратили больше энергии, чем приняли все радиотелескопы мира за все время существования радиоастрономии». Если Вы ознакомились с этим разделом (а следовало бы), то Вы, должно быть, помните, что радиоволны обладают самыми большими длинами волн среди всех видов электромагнитного излучения. Это означает, что соответствующие радиоволнам фотоны переносят совсем немного энергии. Чтобы собрать приемлемое количество информации о светилах в радиолучах, астрономы строят огромные по размерам телескопы. Сотни метров – вот тот не столь уже удивительный рубеж для диаметров объективов, который достигнут современной наукой. К счастью, в мире все взаимосвязано. Строительство гигантских радиотелескопов не сопровождается теми же сложностями в обработке поверхности объектива, которые неизбежны при строительстве оптических телескопов. Допустимые погрешности поверхности пропорциональны длине волны, поэтому, порою, металлические чаши радиотелескопов представляют собой не гладкую поверхность, а попросту решетку, и на качестве приема это никак не сказывается. Большая длина волны также позволяет строить грандиозные системы интерферометров. Порой, в таких проектах участвуют телескопы разных континентов. В проектах есть интерферометры космических масштабов. Если они осуществятся, радиоастрономия достигнет невиданных пределов в разрешении небесных объектов. Кроме сбора излучаемой небесными телами энергии, радиотелескопам доступно «подсвечивание» поверхности тел Солнечной системы радиолучами. Сигнал, посланный, скажем с Земли на Луну, отразится от поверхности нашего спутника и будет принят тем же телескопом, что и посылал сигнал. Этот метод исследований называется радиолокацией. С помощью радиолокации можно многое узнать. Впервые астрономы узнали о том, что Меркурий вращается вокруг своей оси именно таким способом. Расстояние до объектов, скорость их движения и вращения, их рельеф, некоторые данные о химическом составе поверхности – вот те немаловажные сведения, которые по силам выяснить радиолокационными методами. Самый грандиозный пример таких исследований – полное картографирование поверхности Венеры, проведенное АМС «Магеллан» на стыке 80-х и 90-х годов. Как Вы, может быть, знаете, эта планета прячет от человеческого глаза свою поверхность за плотной атмосферой. Радиоволны же беспрепятственно проходят сквозь облака. Теперь мы знаем о рельефе Венеры лучше, чем о рельефе Земли (!), ведь на Земле покрывало океанов мешает проводить изучение большей части твердой поверхности нашей планеты. Увы, скорость распространения радиоволн велика, но не безгранична. К тому же, с удаленностью радиотелескопа от объекта возрастает рассеивание посланного и отраженного сигнала. На дистанции Юпитер-Земля сигнал принять уже сложно. Радиолокация – по астрономическим меркам, оружие ближнего боя.

Инфракрасные телескопы.

Инфракрасные волны – это тепло. Для того, что бы регистрировать тепло очень далеких объектов необходимо отгородить принимающий прибор от излучения всего того тепла, которое порождается близкими предметами, в том числе и самим телескопом. Сегодня приборы для измерения инфракрасных лучей помещают в вакуум и охлаждают жидким гелием. Как же работают эти приборы? Представьте себе тонкий лист фольги, через который пропускают ток. Если будет меняться температура фольги, будет изменяться сопротивление металла и, соответственно, ток через него. Измеряя ток, можно определить степень нагрева фольги. Таков принцип. Только поверхность фольги, на которую сводятся лучи от объекта, делают черной, чтобы она лучше поглощала тепло. Про охлаждение всего прибора мы уже говорили.

Инфракрасные телескопы не обладают способностью оптических воспринимать сразу все длины волн диапазона. Устройство, обычно, делается чувствительным к некоторым узким участкам спектра. В этом инфракрасные телескопы похожи на радиотелескопы, принимающие сигнал только на одной длине волны. Похоже и построение изображения объекта в невидимых глазу лучах в условных цветах. Часто на инфракрасных фотографиях используют оттенки красного цвета для характеристики интенсивности излучения той или иной части изображения. Поэтому, если Вы видите фотографию, на которой в изобилии присутствует красный цвет, знайте: скорее всего, это фотография сделана в тепловых лучах. Один и тот же телескоп вполне может быть как оптическим, так и инфракрасным в разное время. Пример - телескоп имени Хаббла. Во многом, конструкция самих инфракрасных телескопов схожа с конструкцией оптических зеркальных телескопов. Большая часть тепловых лучей поддается отражению обычным телескопическим объективом и фокусированию в одной точке, где и размещается прибор, измеряющий тепло. Также существуют инфракрасные фильтры, пропускающие только тепловые лучи. С такими фильтрами происходит фотографирование.

Ультрафиолетовые телескопы.

Фотографическая пленка, особенно если она специально для этого сделана, способна засвечиваться и ультрафиолетовыми лучами. Поэтому принципиальной проблемы в фотографировании ультрафиолетовых изображений не стоит. Кроме того, в значительной части ультрафиолетового диапазона удается принимать системы с зеркальным объективом и регистрирующим устройством. Ультрафиолетовые телескопы схожи по своей конструкции с инфракрасными или оптическими. Применение фильтров позволяет выделять излучение определенных участков диапазона. Фотоны малых длин волн (меньше 2 000 А) регистрируют уже способами, схожими с регистрацией рентгеновского излучения.

Рентгеновские телескопы.

Фотоны с высокими энергиями, к которым относятся и фотоны рентгеновских волн, уже пробивают всевозможные системы зеркальных объективов. Регистрация таких волн по силам счетчикам элементарных частиц, таким, как счетчик Гейгера. Попадающая в такое устройство частица вызывает кратковременный импульс тока, который и регистрируется. Очень большие проблемы стояли перед астрономами с тем, чтобы при всей сложности процесса регистрации больших потоков рентгеновских фотонов добиться высокого разрешения телескопа. Но сегодня разрешение рентгеновских телескопов достигает уже не несколько градусов, как было раньше, а всего 1’.

Гамма-телескопы.

Гамма-фотоны еще более энергичны, чем фотоны рентгеновского излучения. Их тоже регистрируют специальные устройства-счетчики, только иной конструкции. Увы, разрешение гамма-телескопов не превосходит двух-трех градусов. Гамма-телескопы сегодня регистрируют само наличие и примерное направление на так называемые гамма-вспышки – мощные всплески гамма-излучения, причин которых еще не нашли. Более или менее точно указать место вспышки позволяет одновременное наблюдение вспышки двумя-тремя гамма-телескопами. Совместное использование гамма-телескопов и телескопов, принимающих другие типы излучения, в последние годы помогло отождествлять некоторые гамма-вспышки с тем или иным видимым объектом.


Главные части в телескопе - объектив и окуляр. Объектив направляют в сторону объекта, который хотят наблюдать, а в окуляр смотрят глазом.

Существует три основных типа оптических систем телескопов – рефрактор (с линзовым объективом), рефлектор (с зеркальным объективом) и зеркально-линзовый телескоп.

Телескоп-рефрактор имеет в качестве объектива линзу в передней части трубы. Чем больше диаметр линзы, тем ярче кажется небесный объект в поле зрения, тем более слабый объект можно заметить в этот телескоп. Как правило, объектив рефрактора представляет собой не одиночную линзу, а систему линз. Они изготовляются из разных сортов стекла и склеиваются между собой специальным клеем. Это делается для того, чтобы уменьшить искажения в изображении. Эти искажения называются аберрациями. Аберрациями обладает любая линза. Главные из них – сферическая аберрация и хроматическая аберрация.

Сферическая аберрация заключается в том, что края линзы сильнее отклоняют световые лучи, чем середина. Иными словами, лучи света, пройдя через линзу, не сходятся в одном месте. А нам очень важно, чтобы лучи сходились в одной точке. Ведь от этого зависит чёткость изображения. Но это еще полбеды. Ты знаешь, что белый свет является составным – в него входят лучи всех цветов радуги. В этом легко убедиться с помощью стеклянной призмы. Направим на неё узкий луч белого света. Мы увидим, что белый луч, во-первых, разложится на несколько цветных лучей, и, во-вторых преломится, т.е. изменит направление. Но самое важное то, что лучи разного цвета преломляются по-разному – красные отклоняются меньше, а синие – больше. Линза тоже своего рода призма. И она неодинаково фокусирует лучи разных цветов – синие собираются в точку ближе к линзе, красные – дальше от неё.


Изображение, даваемое линзой, всегда слегка окрашено по краям радужной каймой. Так проявляет себя хроматическая аберрация.

Чтобы уменьшить сферическую и хроматическую аберрации, средневековые астрономы придумали делать линзы с очень большим фокусным расстоянием. Фокусное расстояние – это расстояние от центра линзы до фокуса , т.е. точки, где происходит пересечение преломленных лучей света (на самом деле в фокусе получается крошечное изображение предмета). Задача объектива - собрать побольше света от небесного объекта и построить крошечное и чёткое изображение этого предмета в фокусе.


Польский астроном XVII века Ян Гевелий изготавливал телескопы длиной 50 метров. Зачем? Чтобы не так сильно сказывались аберрации, т.е. чтобы получить возможно более чёткое и неокрашенное изображение небесного объекта. Конечно, работать с таким рефрактором было очень неудобно. Поэтому Гевелий, хотя и был трудолюбивым астрономом, многого не смог открыть.

Впоследствии оптики придумали делать объектив не из одной, а из двух линз. Причём так подбирали сорта стекол и кривизну их поверхностей, что аберрации одной линзы гасили, компенсировали аберрации другой линзы.



Так появился сложный объектив. Рефракторы сразу уменьшились в размерах. Зачем делать длинный телескоп, если качественный объектив можно сделать более короткофокусным? Именно поэтому в детских телескопах такое плохое изображение – ведь там используется в качестве объектива всего одна линза. А нужно минимум две. Одна линза стоит дешевле, чем две, поэтому детские телескопы так дешевы. Но всё-таки, какие бы стёкла оптики ни подбирали для объективов, совсем избежать хроматической аберрации не удаётся. Поэтому в рефракторах всегда есть небольшой синий ореол вокруг изображения. Однако в целом, рефракторы среди телескопов других систем дают самое чёткое изображение.

Ты должен остановить свой выбор на рефракторе, если собираешься наблюдать подробности небесных объектов – горы и кратеры на Луне, полосы и Большое Красное Пятно на Юпитере, кольца Сатурна, двойные звёзды, шаровые звёздные скопления и т.п. Бледные, размытые объекты – туманности, галактики, кометы – нужно наблюдать в телескоп-рефлектор .

В рефлекторе свет собирается не линзой, а вогнутым зеркалом определённой кривизны. Зеркало изготовить проще, чем линзу, потому что приходится шлифовать только одну поверхность. К тому же, для линз нужно особое качественное стекло, а для зеркал подходит любое стекло. Поэтому рефлекторы в целом стоят дешевле рефракторов с таким же диаметром линзы. Многие любители астрономии сами строят неплохие рефлекторы. Главное преимущество рефлектора в том, что зеркало не даёт хроматической аберрации. Первый в истории рефлектор создал Исаак Ньютон в XVIII веке. Этот английский учёный первым заметил, что вогнутое зеркало одинаково отражает лучи всех цветов и может создавать неокрашенное изображение. Ньютон разработал оптическую систему телескопа, которую принято называть Ньютоновской. Рефлекторы системы Ньютона изготовляются сегодня промышленным способом во многих странах мира.

Самый большой рефлектор системы Ньютона в XVIII веке построил английский астроном Вильям Гершель. Диаметр вогнутого зеркала был 122 см, а длина трубы телескопа – 12 метров. Конечно, телескоп неуклюжий, но всё-таки это уже не 50-метровый рефрактор Гевелия. Со своим телескопом Гершель совершил много замечательных открытий. Одно из самых важных – открытие планеты Уран.

Посмотрим на ход лучей в системе рефрактора и рефлектора.



В рефракторе свет проходит через линзу и непосредственно попадает в окуляр и дальше в глаз наблюдателя. В рефлекторе свет отражается от вогнутого зеркала и направляется сначала на плоское зеркало, установленное в верхней части трубы, и только потом попадает в окуляр и глаз. В рефлекторе, таким образом, работает два зеркала – одно вогнутое (главное), другое плоское (диагональное). Задача главного зеркала такая же, как у линзового объектива - собирать свет и строить крошечное и чёткое изображение в фокусе.

Плоское (диагональное) зеркало держится на специальных растяжках (как правило, их 4 штуки) в передней части трубы. А теперь представь: свет попадает в трубу телескопа, часть света загораживает плоское зеркало и растяжки. В результате на главное вогнутое зеркало попадает меньше света, чем могло попасть. Это называется центральным экранированием. Центральное экранирование приводит к потере чёткости изображения.



Наконец, познакомимся с зеркально-линзовыми телескопами . Они сочетают в себе элементы и рефрактора и рефлектора. Там есть и вогнутое зеркало, и линза в передней части трубы. Как правило, задняя часть этой линзы посеребрена. Этот серебристый кружок играет роль дополнительного зеркала. Ход световых лучей в зеркально-линзовых телескопах сложнее. Свет проходит через переднюю линзу, затем попадает на вогнутое зеркало, отражается от него, идёт обратно к передней линзе, отражается от серебристого кружка, идёт обратно к вогнутому зеркалу и проходит сквозь отверстие в этом зеркале. И только после этого свет попадает в окуляр и глаз наблюдателя. Световой поток внутри трубы три раза меняет направление. Поэтому зеркально-линзовые телескопы так компактны. Если у тебя мало места на балконе, то свой выбор нужно остановить именно на таком телескопе.

Существует несколько оптических систем зеркально-линзовых телескопов. Например, телескоп системы Максутова, Шмидта, Кассегрена, Клевцова. Каждый из этих оптиков по-своему решает основные недостатки зеркально-линзового телескопа. Что же это за недостатки? Во-первых, много оптических поверхностей. Давай посчитаем: как минимум 6, и на каждой из них теряется часть света (к сведению, в рефракторе и рефлекторе их по 4). В нутри такого телескопа теряется много света. Если рефрактор способен пропускать 92% попадающего в него света от небесного объекта, то через зеркально-линзовый телескоп проходит только 55% света. Иными словами, объекты в такой телескоп выглядят более тусклыми по сравнению с рефрактором с таким же диаметром объектива. Поэтому зеркально-линзовые телескопы лучше использовать для ярких объектов – Луны и планет. Но, учитывая центральное экранирование из-за зеркала на передней линзе, приходится признать, что чёткость изображения также ниже, чем в рефракторе. Во-вторых, и линза, и вогнутое зеркало создают свои аберрации. Поэтому качественный зеркально-линзовый телескоп стоит довольно дорого.





Увеличение телескопа. Чтобы найти увеличение телескопа, нужно фокусное расстояние объектива разделить на фокусное расстояние окуляра. Например, объектив имеет фокусное расстояние 1 м (1 000 мм), при этом у нас в распоряжении три окуляра с фокусными расстояниями 5 см (50 мм), 2 см (20 мм) и 1 см (10 мм). Меняя эти окуляры, мы получим три увеличения:


Обрати внимание, если мы берём фокусное расстояние объектива в мм, то и фокусное расстояние окуляра тоже в мм.

Казалось бы, если брать всё более короткофокусные окуляры, то можно получать всё большие увеличения. Например, окуляр с фокусным расстоянием 1 мм дал бы с нашим объективом увеличение 1 000 крат. Однако изготовить такой окуляр с высокой точностью очень сложно, да и нет необходимости. При наземных наблюдениях использовать увеличение более 500 крат не удаётся из-за атмосферных помех. Даже если поставить увеличение в 500 крат, атмосферные течения так сильно портят изображение, что на нём нельзя рассмотреть ничего нового. Как правило, наблюдения проводят с увеличением максимум 200-300 крат.

Несмотря на применение больших увеличений, звёзды в телескоп всё равно выглядят точками . Причина - колоссальная удалённость звёзд от Земли. Однако, телескоп позволяет увидеть невидимые глазом звёзды, т.к. собирает больше света, чем человеческий глаз. Звёзды в телескоп выглядят ярче, у них лучше различаются оттенки, а также сильнее заметно мерцание, вызываемое земной атмосферой.

Максимальное и минимальное полезные увеличения телескопа. Одно из назначений телескопа в том, чтобы собрать побольше света от небесного объекта. Чем больше света пройдёт через объектив телескопа, тем ярче будет выглядеть объект в поле зрения. Это особенно важно при наблюдении туманных объектов - туманностей, галактик, комет. При этом нужно, чтобы весь собранный свет попал в глаз наблюдателя.


Максимальный диаметр зрачка человеческого глаза 6 мм. Если выходящий из окуляра световой пучок (т.н. выходной зрачок ) будет шире 6 мм, значит, часть света в глаз не попадёт. Следовательно, нужно использовать такой окуляр, который даёт выходной зрачок не шире 6 мм. При этом телескоп даст минимальное полезное увеличение. Его рассчитывают так: диаметр объектива (в мм) делят на 6 мм. Например, если диаметр объектива 120 мм, то минимальное полезное увеличение будет 20 крат. Ещё меньшее увеличение на этом телескопе использовать нерационально, так как выходной зрачок будет больше 6 мм.

Запомни закономерность: чем меньше увеличение телескопа, тем больше выходной зрачок (и наоборот).

Минимальное полезное увеличение телескопа ещё называют равнозрачковым , потому что выходной зрачок окуляра совпадает с максимальным диаметром зрачка человека - 6 мм.

Чтобы найти максимальное полезное увеличение телескопа, нужно диаметр объектива (в мм) умножить на 1,5. Если диаметр объектива 120 мм, то получим максимальное полезное увеличение 180 крат. Большее увеличение на этом телескопе получить можно, но это будет бесполезно, т.к. новых деталей выявить не удастся из-за появления дифракционных картин. При наблюдении двойных звёзд иногда используют увеличение, численно равное удвоенному диаметру объектива (в мм).

Таким образом, на телескопе с диаметром объектива 120 мм имеет смысл использовать увеличения от 20 до 180 крат.

Существует т.н. проницающее увеличение. Считают, что при его использовании достигается наилучшее проницание - становятся видны самые слабые звёзды, доступные для данного телескопа. Проницающее увеличение используют для наблюдения звёздных скоплений и спутников планет. Чтобы его найти, нужно диаметр объектива (в мм) разделить на 0,7.

В телескопах совместно с окуляром иногда применяют т.н. линзу Барлоу , представляющую собой рассеивающую линзу. Если линза Барлоу двухкратная (2х), то она как бы увеличивает фокусное расстояние объектива в 2 раза (3-кратная линза Барлоу - в 3 раза). Если, например, у объектива фокусное расстояние равно 1 000 мм, то с использованием 2-кратной линзы Барлоу и окуляра с фокусным рассоянием 10 мм мы получим увеличение 200 крат. Таким образом, линза Барлоу служит для повышения увеличения. Конечно, эта линза вносит в общую картину свои аберрации, поэтому при выявлении мелких деталей на Луне, Солнце, планетах от этой линзы лучше отказаться.

Подробнее смотри

Телескоп, оборудованный для фотографии небесных объектов, называется астрографом . В нём вместо окуляра используется приёмник излучения (раньше это была фотопластинка, фотоплёнка, сегодня - приборы с зарядовой связью). Светочувствительный элемент приёмника излучения располагается в фокусе объектива, так что крошечное изображение предмета запечатлевается. Сегодня астрограф непременно используется в сочетании с компьютером.

Небо манит нас, когда мы смотрим на его просторы. Что же скрывается за облаками, и что находится в его непроглядной темноте? На эти вопросы, разумеется, отчасти мы смогли получить представления с помощью телескопа. Бесспорно, это уникальное устройство, которое подарило нам великолепную картину космоса. И несомненно, приблизило наше понимание небесного пространства.

Известно, что первый телескоп создал Галилео Галилей. Хотя немногие знают, что он использовал ранние открытия других учёных. Например, изобретение зрительной трубы для мореплавания.
Кроме того, мастера по стеклу уже создали очки. Вдобавок, использовались линзы. И эффект преломления и увеличения стекла был более или менее изучен.


Первый телескоп Галилея

Безусловно, Галилео добился значительного результата в исследовании данной области. К тому же, он собрал и усовершенствовал все наработки. И в итоге, разработал и представил первый в мире телескоп. По правде, он имел лишь трёхкратное увеличение. Но отличался высоким на тот момент качеством изображения.

Кстати, именно Галилей назвал свой разработанный объект телескопом.
В дальнейшем, учёный не остановился на достигнутом. Он усовершенствовал прибор до двадцати кратного увеличения картинки.
Важно, что Галилео не только разработал телескоп. Более того, он первым использовал его для исследования космоса. Кроме того, он сделал массу астрономических открытий.


Характеристика телескопов

Телескоп состоит из трубы, которая стоит на специальной монтировке. Её оснащают осями для нацеливания на наблюдаемый объект.
Кроме того, у оптического устройства имеется окуляр и объектив. Причём задняя плоскость объектива перпендикулярна оптической оси, и соединена с передней поверхностью окуляра. Которая, между прочим, аналогична объективной по отношению к оптической оси.


Стоит отметить, что для фокусировки используется особое устройство.
Основными характеристиками телескопов являются увеличение и разрешение.
Увеличение изображения зависит от фокусного расстояния окуляра и объекта.
С разрешением связано свойство преломления света. Таким образом, размер наблюдаемого объекта ограничен разрешением телескопа.

Виды телескопов в астрономии

Разновидности телескопов в связаны с различными способами построения. Если точнее, то применением различных инструментов в качестве объектива. Кроме того, имеет значение для какой цели нужно устройство.
На сегодняшний день существует несколько основных типов телескопов в астрономии. В зависимости от светособирающего компонента они бывают линзовые, зеркальные и комбинированные.

Линзовые телескопы (диоптрические)

По другому, их называют рефракторами. Это самые первые телескопы. В них свет собирается линзой, которая с двух сторон ограничена сферой. Поэтому она считается двояковыпуклой. К тому же, линза является объективом.
Что интересно, можно использовать не просто линзу, а целую систему из них.


Стоит заметить, что выпуклые линзы преломляют лучи света и собирают их в фокус. А в нём, в свою очередь, строится изображение. Для того, чтобы его рассмотреть применяют окуляр.
Что важно, линза устанавливается так, чтобы фокус и окуляр совпадали.
Кстати, Галилео изобрёл именно рефрактор. Но современные приборы состоят из двух линз. Одна из них собирает свет, а другая рассеивает. Что позволяет уменьшить отклонения и погрешности.

Зеркальные телескопы (катаптрические)

Также их называют рефлекторы. В отличие от линзового типа, объектив у них это вогнутое зеркало. Оно собирает свет звезды в одной точке и отражает его на окуляр. При этом погрешности минимальны, а разложение света на лучи отсутствует полностью. Но использование рефлектора ограничивает поле зрения наблюдателя.
Что интересно, зеркальные телескопы самые распространённые в мире. Потому как разработка их намного легче, чем, например, линзовых приборов.


Катадиоптрические телескопы (комбинированные)

Это зеркально-линзовые приборы. В них для получения изображения применяют и линзы, и зеркала.

В свою очередь, их разделили на два подвида:
1) телескопы Шмидт-Кассегрена-в них в самом центре кривизны зеркала установлена диафрагма. Тем самым происходит исключение сферических нарушений и отклонений. Но увеличивается поле зрения и качество изображения.
2) телескопы Максутова-Кассегрена-в районе фокальной плоскости установлена плоско-выпуклая линза. В результате предотвращается кривизна поля и сферическое отклонение.


Стоит отметить, что в современной астрономии чаще применяются именно комбинированный вид приборов. В результате смешения двух разных элементов для собирания света они позволяют получать более качественные данные.

Такие устройства способны принимать исключительно одну волну сигналов. С помощью антенн происходит передача сигналов и обработка их в изображения.
Радиотелескопы используются астрономами для научных исследований.


Инфракрасные модели телескопов

Они по своей конструкции очень схожи с оптическими зеркальными телескопами. Принцип получения изображения практически аналогичен. Лучи отражаются объективом и собираются в одной точке. Далее специальный прибор измеряет тепло и фотографирует полученный результат.


Современные телескопы

Телескоп это оптический прибор для наблюдений. Изобрели его почти полвека назад. На протяжении этого времени, учёные меняли и усовершенствовали устройство. Действительно, создано много новых моделей. В отличие от первых они имеют повышенное качество и увеличение изображения.

В нашем веке технологий используются компьютерные телескопы. Соответственно, они оснащены специальными программами. Что важно, современный прототип учитывает, что у каждого человека восприятие глаз разное. Для высокой точности картинку передают на монитор. Таким образом изображение воспринимается таким, какое оно на самом деле есть. Вдобавок, данный способ наблюдения исключает любые искажения.


Кроме того, учёные нашего поколения применяют одновременно не одно устройство, а несколько. Более того, к телескопу подключают уникальные камеры, которые передают информацию на компьютер. Это позволяет получать чёткие и точные сведения. Которые, разумеется, используют для изучения и .

Что интересно, сейчас телескопы не просто приборы для наблюдения. Но также устройства для измерения расстояний между космическими объектами. Для этой функции к ним подключают спектрографы. И взаимодействие этих приборов предоставляет конкретные данные.

Другая классификация

Есть еще и другие виды телескопов. Но используются они по своему отдельному назначению. Например, рентгеновские и гамма-телескопы. Или ультрафиолетовые устройства, которые фильтруют картинку без обработки и засвечивания.
Кроме того, можно разделить приборы на профессиональные и любительские. Первые используются учёными и астрономами. Очевидно, что вторые подходят для домашнего применения.


Как выбрать телескоп для любителей астрономии

Выбор телескопа для любителей астрономии основывается на том, что же вы хотите наблюдать. В принципе, выше описаны виды и характеристики приборов. Вам просто нужно выбрать какой больше нравится. Лучше, на мой взгляд остановиться на линзовом, либо комбинированном виде. Но выбирать, разумеется, вам.


По данным интернета, лучшие любительские телескопы представлены фирмами: Celestron, Bresser и Veber.

Телескопом сотни лет изучают жизнь планет

Создание и разработка телескопа, на самом деле, позволили сделать огромный шаг в исследовании космоса. Вероятно, всё, что мы знаем сформировалось с помощью этого прибора. Хотя, конечно, не стоит приуменьшать саму деятельность учёных.
Сегодня мы рассмотрели некоторые типы телескопов и их характеристики. Однозначно, виден прогресс технологий. И как результат, мы узнали множество интересного о космических объектах и самом космосе. Кроме того, мы можем любоваться прекрасным небом и знакомиться с ним благодаря этому чудесному изобретению.

Телескоп - это уникальный оптический прибор, предназначенный для наблюдения за небесными телами. Использование приборов позволяет рассмотреть самые разные объекты, не только те, которые располагаются недалеко от нас, но и те, которые находятся за тысячи световых лет от нашей планеты. Так что такое телескоп и кто его придумал?

Первый изобретатель

Телескопические устройства появились в семнадцатом веке. Однако по сей день ведутся дебаты, кто изобрел телескоп первым - Галилей или Липперсхей. Эти споры связаны с тем, что оба ученых примерно в одно время вели разработки оптических устройств.

В 1608 году Липперсхей разработал очки для знати, позволяющие видеть удаленные объекты вблизи. В это время велись военные переговоры. Армия быстро оценила пользу разработки и предложила Липперсхею не закреплять авторские права за устройством, а доработать его так, чтобы в него можно было бы смотреть двумя глазами. Ученый согласился.

Новую разработку ученого не удалось удержать втайне: сведения о ней были опубликованы в местных печатных изданиях. Журналисты того времени назвали прибор зрительной трубой. В ней использовалось две линзы, которые позволяли увеличить предметы и объекты. С 1609 года в Париже вовсю продавали трубы с трехкратным увеличением. С этого года какая-либо информация о Липперсхее исчезает из истории, а появляются сведения о другом ученом и его новых открытиях.

Примерно в те же годы итальянец Галилео занимался шлифовкой линз. В 1609 году он представил обществу новую разработку - телескоп с трехкратным увеличением. Телескоп Галилея имел более высокое качество изображения, чем трубы Липперсхея. Именно детище итальянского ученого получило название «телескоп».

В семнадцатом веке телескопы изготавливались голландскими учеными, но они имели низкое качество изображения. И только Галилею удалось разработать такую методику шлифовки линз, которая позволила увеличить четко объекты. Он смог получить двадцатикратное увеличение, что было в те времена настоящим прорывом в науке. Исходя из этого невозможно сказать, кто изобрел телескоп: если по официальной версии, то именно Галилео представил миру устройство, которое он назвал телескопом, а если смотреть по версии разработки оптического прибора для увеличения объектов, то первым был Липперсхей.

Первые наблюдения за небом

После появления первого телескопа были сделаны уникальные открытия. Галилео применил свою разработку для отслеживания небесных тел. Он первым увидел и зарисовал лунные кратеры, пятна на Солнце, а также рассмотрел звезды Млечного Пути, спутники Юпитера. Телескоп Галилея дал возможность увидеть кольца у Сатурна. К сведению, в мире до сих пор есть телескоп, работающий по тому же принципу, что и устройство Галилея. Он находится в Йоркской обсерватории. Аппарат имеет диаметр 102 сантиметра и исправно служит ученым для отслеживания небесных тел.

Современные телескопы

На протяжении столетий ученые постоянно изменяли устройства телескопов, разрабатывали новые модели, улучшали кратность увеличения. В результате удалось создать малые и большие телескопы, имеющие разное назначение.

Малые обычно применяют для домашних наблюдений за космическими объектами, а также для наблюдения за близкими космическими телами. Большие аппараты позволяют рассмотреть и сделать снимки небесных тел, расположенных в тысячах световых лет от Земли.

Виды телескопов

Существует несколько разновидностей телескопов:

  1. Зеркальные.
  2. Линзовые.
  3. Катадиоптрические.

К линзовым относят рефракторы Галилея. К зеркальным относят устройства рефлекторного типа. А что такое телескоп катадиоптрический? Это уникальная современная разработка, в которой сочетается линзовый и зеркальный прибор.

Линзовые телескопы

Телескопы в астрономии играют важную роль: они позволяют видеть кометы, планеты, звезды и другие космические объекты. Одними из первых разработок были линзовые аппараты.

В каждом телескопе есть линза. Это главная деталь любого устройства. Она преломляет лучи света и собирает их в точке, под названием фокус. Именно в ней строится изображение объекта. Чтобы рассмотреть картинку, используют окуляр.

Линза размещается таким образом, чтобы окуляр и фокус совпадали. В современных моделях для удобного наблюдения в телескоп применяют подвижные окуляры. Они помогают настроить резкость изображения.

Все телескопы обладают аберрацией - искажением рассматриваемого объекта. Линзовые телескопы имеют несколько искажений: хроматическую (искажаются красные и синие лучи) и сферическую аберрацию.

Зеркальные модели

Зеркальные телескопы называют рефлекторами. На них устанавливается сферическое зеркало, которое собирает световой пучок и отражает его с помощью зеркала на окуляр. Для зеркальных моделей не характерна хроматическая аберрация, так как свет не преломляется. Однако у зеркальных приборов выражена сферическая аберрация, которая ограничивает поле зрения телескопа.

В графических телескопах используются сложные конструкции, зеркала со сложными поверхностями, отличающиеся от сферических.

Несмотря на сложность конструкции, зеркальные модели легче разрабатывать, чем линзовые аналоги. Поэтому данный вид более распространен. Самый большой диаметр телескопа зеркального типа составляет более семнадцати метров. На территории России самый большой аппарат имеет диаметр шесть метров. На протяжении многих лет он считался самым большим в мире.

Характеристики телескопов

Многие покупают оптические аппараты для наблюдений за космическими телами. При выборе устройства важно знать не только то, что такое телескоп, но и то, какими характеристиками он обладает.

  1. Увеличение. Фокусное расстояние окуляра и объекта - это кратность увеличения телескопа. Если фокусное расстояние объектива два метра, а у окуляра - пять сантиметров, то такое устройство будет обладать сорокакратным увеличением. Если окуляр заменить, то увеличение будет другим.
  2. Разрешение. Как известно, свету свойственны преломление и дифракция. В идеале любое изображение звезды выглядит как диск с несколькими концентрическими кольцами, называемыми дифракционными. Размеры дисков ограничены только возможностями телескопа.

Телескопы без глаз

А что такое телескоп без глаза, для чего его используют? Как известно, у каждого человека глаза воспринимают изображение по-разному. Один глаз может видеть больше, а другой - меньше. Чтобы ученые смогли рассмотреть все, что им необходимо увидеть, применяют телескопы без глаз. Эти аппараты передают картинку на экраны мониторов, через которые каждый видит изображение именно таким, какое оно есть, без искажений. Для малых телескопов с этой целью разработаны камеры, подключаемые к аппаратам и снимающие небо.

Самыми современными методами видения космоса стало использование ПЗС камер. Это особые светочувствительные микросхемы, которые собирают информацию с телескопа и передают ее на ЭВМ. Получаемые с них данные настолько четкие, что невозможно представить, какими еще устройствами можно было бы получить такие сведения. Ведь глаз людей не может различать все оттенки с такой высокой четкостью, как это делают современные камеры.

Для измерения расстояний между звездами и другими объектами пользуются специальными приборами - спектрографами. Их подключают к телескопам.

Современный астрономический телескоп - это не одно устройство, а сразу несколько. Получаемые данные с нескольких аппаратов обрабатываются и выводятся на мониторы в виде изображений. Причем после обработки ученые получают изображения очень высокой четкости. Увидеть глазами в телескоп такие же четкие изображения космоса невозможно.

Радиотелескопы

Астрономы для своих научных разработок используют огромные радиотелескопы. Чаще всего они выглядят как огромные металлические чаши с параболической формой. Антенны собирают получаемый сигнал и обрабатывают получаемую информацию в изображения. Радиотелескопы могут принимать только одну волну сигналов.

Инфракрасные модели

Ярким примером инфракрасного телескопа является аппарат имени Хаббла, хотя он может быть одновременно и оптическим. Во многом конструкция инфракрасных телескопов схожа с конструкцией оптических зеркальных моделей. Тепловые лучи отражаются обычным телескопическим объективом и фокусируются в одной точке, где находится прибор, измеряющий тепло. Полученные тепловые лучи пропускаются через тепловые фильтры. Только после этого происходит фотографирование.

Ультрафиолетовые телескопы

При фотографировании фотопленка может засвечиваться ультрафиолетовыми лучами. В некоторой части ультрафиолетового диапазона возможно принимать изображения без обработки и засвечивания. А в некоторых случаях необходимо, чтобы лучи света прошли через специальную конструкцию - фильтр. Их использование помогает выделить излучение определенных участков.

Существуют и другие виды телескопов, каждый из которых имеет свое назначение и особые характеристики. Это такие модели, как рентгеновские, гамма-телескопы. По своему назначению все существующие модели можно разделить на любительские и профессиональные. И это далеко не вся классификация аппаратов для отслеживания небесных тел.