Определение минутного объема дыхания (мод) и легочных объемов. Вентиляция легких: легочные объемы и емкости

Частота дыхания - количество вдохов и выдохов за единицу времени. Взрослый человек делает в среднем 15-17 дыхательных движений в минуту. Большое значение имеет тренировка. У тренированных людей дыхательные движения совершаются более медленно и составляют 6-8 дыханий в минуту. Так, у новорожденных ЧД зависит от ряда факторов. При стоянии ЧД больше, чем при сидении или лежании. Во время сна дыхание более редкое (приблизительно на 1 / 5).

При мышечной работе дыхание учащается в 2-3 раза, доходя при некоторых видах спортивных упражнений до 40-45 циклов в минуту и более. На частоту дыхания влияет температура окружающей среды, эмоции, умственная работа.

Глубина дыхания или дыхательный объем - количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Во время каждого дыхательного движения обменивается 300-800 мл воздуха, находящегося в легких. Дыхательный объем (ДО) падает с увеличением частоты дыхания.

Минутный объем дыхания - количество воздуха, которое проходит через легкие в минуту. Он определяется произведением величины вдыхаемого воздуха на число дыхательных движений за 1 мин: МОД = ДО х ЧД.

У взрослого человека МОД составляет 5-6 л. Возрастные изменения показателей внешнего дыхания представлены в табл. 27.

Табл. 27.Показатели внешнего дыхания (по: Хрипкова , 1990)

Дыхание новорожденного ребенка частое и поверхностное и подвержено значительным колебаниям. С возрастом происходит урежение частоты дыхания, увеличение дыхательного объема и легочной вентиляции. За счет большей частоты дыхания у детей значительно выше, чем у взрослых, минутный объем дыхания (в пересчете на 1 кг массы).

Вентиляция легких может меняться в зависимости от поведения ребенка. В первые месяцы жизни беспокойство, плач, крик увеличивают вентиляцию в 2-3 раза главным образом за счет увеличения глубины дыхания.

Мышечная работа повышает минутный объем дыхания пропорционально величине нагрузки. Чем старше дети, тем более интенсивную мышечную работу они могут выполнять и тем больше у них увеличивается вентиляция легких. Однако под влиянием тренировки одну и ту же работу можно выполнять при меньшем увеличении вентиляции легких. В то же время тренированные дети способны увеличить свой минутный объем дыхания при работе до более высокого уровня, чем их сверстники, не занимающиеся физическими упражнениями (цит. по: Маркосян , 1969). С возрастом эффект тренировки сказывается больше, и у подростков 14-15 лет тренировка вызывает столь же значительные сдвиги легочной вентиляции, как и у взрослых людей.

Жизненная емкость легких - наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. Жизненная емкость легких (ЖЕЛ) является важной функциональной характеристикой дыхания и слагается из дыхательного объема, резервного объема вдоха и резервного объема выдоха.

В покое дыхательный объем мал по сравнению с общим объемом воздуха в легких. Поэтому человек может как вдохнуть, так и выдохнуть большой дополнительный объем. Резервный объем вдоха (РО вд) - количество воздуха, которое человек может дополнительно вдохнуть после нормального вдоха и составляет 1500-2000 мл. Резервный объем выдоха (РО выд) - количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха; его величина 1000-1500 мл.

Даже после самого глубокого выдоха в альвеолах и воздухоносных путях легких остается некоторое количество воздуха - это остаточный объем (ОО). Однако при спокойном дыхании в легких остается значительно больше воздуха, чем остаточный объем. Количество воздуха, остающееся в легких после спокойного выдоха, называется функциональной остаточной емкостью (ФОЕ). Она состоит из остаточного объема легких и резервного объема выдоха.

Наибольшее количество воздуха, которое полностью заполняет легкие, называется общей емкостью легких (ОЕЛ). Она включает остаточный объем воздуха и жизненную емкость легких. Соотношение между объемами и емкостями легких представлено на рис. 8 (Атл., с. 169). Жизненная емкость меняется с возрастом (табл. 28). Так как измерение жизненной емкости легких требует активного и сознательного участия самого ребенка, то ее измеряют у детей с 4-5 лет.

К 16-17 годам жизненная емкость легких достигает величин, характерных для взрослого человека. Жизненная емкость легких является важным показателем физического развития.

Табл. 28. Средняя величина жизненной емкости легких, мл (по: Хрипкова , 1990)

С детского возраста и до 18-19 лет жизненная емкость легких увеличивается, с 18 до 35 лет она сохраняется на постоянном уровне, а после 40 уменьшается. Это связано со снижением эластичности легких и подвижности грудной клетки.

Жизненная емкость легких зависит от ряда факторов, в частности от длины тела, веса и пола. Для оценки ЖЕЛ рассчитывают должную величину с использованием специальных формул:

для мужчин:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 3,60;

для женщин:

ЖЕЛ должн = [(рост, см ∙ 0,041)] - [(возраст, лет ∙ 0,018)] - 2,68;

для мальчиков 8-10 лет:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 4,6;

для мальчиков 13-16 лет:

ЖЕЛ должн = [(рост, см ∙ 0,052)] - [(возраст, лет ∙ 0,022)] - 4,2

для девочек 8-16 лет:

ЖЕЛ должн = [(рост, см ∙ 0,041)] - [(возраст, лет ∙ 0,018)] - 3,7

У женщин ЖЕЛ на 25% меньше, чем у мужчин; у людей тренированных она больше, чем у нетренированных. Особенно она велика при занятиях такими видами спорта, как плавание, бег, лыжи, гребля и т. д. Так, например, у гребцов она составляет 5 500 мл, у пловцов - 4 900 мл, гимнастов - 4 300 мл, футболистов - 4 200 мл, штангистов - около 4 000 мл. Для определения жизненной емкости легких используется прибор спирометр (метод спирометрии). Он состоит из сосуда с водой и помещенного в него вверх дном другого сосуда емкостью не менее 6 л, в котором находится воздух. Ко дну этого второго сосуда подведена система трубок. Через эти трубки испытуемый дышит, так что воздух в его легких и в сосуде составляет единую систему.

Газообмен

Содержание газов в альвеолах . Во время акта вдоха и выдоха человек постоянно вентилирует легкие, поддерживая в альвеолах газовый состав. Вдыхает человек атмосферный воздух с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%). В выдыхаемом воздухе содержится 16,3% кислорода, а углекислого - 4%. При вдохе из 450 мл вдыхаемого атмосферного воздуха в легкие попадает лишь около 300 мл, а приблизительно 150 мл остается в воздухоносных путях и в газообмене не участвует. При выдохе, который следует за вдохом, этот воздух выводится наружу неизменным, то есть не отличается по своему составу от атмосферного. Поэтому его называют воздухом мертвого, или вредного, пространства. Воздух, достигший легких, смешивается здесь с 3000 мл воздуха, уже находящегося в альвеолах. Газовая смесь в альвеолах, участвующая в газообмене, называется альвеолярным воздухом . Поступившая порция воздуха невелика по сравнению с объемом, к которому она добавляется, поэтому полное обновление всего находящегося в легких воздуха - процесс медленный и прерывистый. Обмен между атмосферным и альвеолярным воздухом незначительно сказывается на альвеолярном воздухе, и его состав практически остается постоянным, что видно из табл. 29.

Табл. 29. Состав вдыхаемого, альвеолярного и выдыхаемого воздуха, в %

При сравнении состава альвеолярного воздуха с составом вдыхаемого и выдыхаемого видно, что одну пятую часть поступающего кислорода организм удерживает для своих нужд, в то время как количество СО 2 в выдыхаемом воздухе в 100 раз больше того количества, которое поступает в организм при вдохе. По сравнению с вдыхаемым воздухом он содержит меньше кислорода, но больше СО 2 . Альвеолярный воздух вступает в тесный контакт с кровью, и от его состава зависит газовый состав артериальной крови.

У детей иной состав как выдыхаемого, так и альвеолярного воздуха: чем моложе дети, тем меньше у них процент углекислого газа и тем больше процент кислорода в выдыхаемом и альвеолярном воздухе, соответственно меньше процент использования кислорода (табл. 30). Следовательно, у детей низкая эффективность легочной вентиляции. Поэтому ребенку на один и тот же объем потребленного кислорода и выделяемого углекислого газа нужно больше вентилировать легкие, чем взрослым.

Табл. 30. Состав выдыхаемого и альвеолярного воздуха
(средние данные по: Шалков , 1957; сост. по: Маркосян , 1969)

Поскольку у маленьких детей дыхание частое и поверхностное, то большую долю дыхательного объема составляет объем «мертвого» пространства. В результате этого выдыхаемый воздух состоит в большей степени из атмосферного воздуха, и в нем меньше процент углекислого газа и процент использования кислорода из данного объема дыхания. Вследствие этого низка эффективность вентиляции у детей. Несмотря на повышенный, по сравнению со взрослыми процент кислорода в альвеолярном воздухе у детей не имеет существенного значения, так как для полного насыщения гемоглобина крови достаточно 14-15% кислорода в альвеолах. Больше кислорода, чем его связывается гемоглобином, в артериальную кровь перейти не может. Низкий уровень содержания углекислого газа в альвеолярном воздухе у детей свидетельствует о его более низком содержании в артериальной крови по сравнению со взрослыми.

Обмен газов в легких . Газообмен в легких осуществляется в результате диффузии кислорода из альвеолярного воздуха в кровь и углекислого газа из крови в альвеолярный воздух. Диффузия происходит вследствие разности парциального давления этих газов в альвеолярном воздухе и их насыщения в крови.

Парциальное давление - это часть общего давления, которое приходится на долю данного газа в газовой смеси. Парциальное давление кислорода в альвеолах (100 мм рт. ст.) значительно выше, чем напряжение О 2 в венозной крови, поступающей в капилляры легких (40 мм рт. ст.). Параметры парциального давления для СО 2 имеют обратное значение - 46 мм рт. ст. в начале легочных капилляров и 40 мм рт. ст. в альвеолах. Парциальное давление и напряжение кислорода и углекислого газа в легких приведены в табл. 31.

Табл. 31. Парциальное давление и напряжение кислорода и углекислого газа в легких, в мм рт. ст.

Эти градиенты (разность) давлений являются движущей силой диффузии О 2 и СО 2 , то есть газообмена в легких.

Диффузионная способность легких для кислорода очень велика. Это обусловлено большим количеством альвеол (сотни миллионов), большой их газообменной поверхностью (около 100 м 2), а также малой толщиной (около 1 мкм) альвеолярной мембраны. Диффузионная способность легких для кислорода у человека равна около 25 мл/мин в расчете на 1 мм рт. ст. Для углекислого газа вследствие его высокой растворимости в легочной мембране диффузионная способность в 24 раза выше.

Диффузия кислорода обеспечивается разностью парциальных давлений, равной около 60 мм рт. ст., а углекислого газа - всего лишь около 6 мм рт. ст. Времени на протекание крови через капилляры малого круга (около 0,8 с) достаточно для полного выравнивания парциального давления и напряжения газов: кислород растворяется в крови, а углекислый газ переходит в альвеолярный воздух. Переход углекислого газа в альвеолярный воздух при относительно небольшой разнице давлений объясняется высокой диффузионной способностью для этого газа (Атл., рис. 7, с. 168).

Таким образом, в легочных капиллярах совершается постоянный обмен: кислорода и углекислого газа. В результате этого обмена кровь насыщается кислородом и освобождается от углекислого газа.

Весь сложный процесс можно подразделить на три основных этапа: внешнее дыхание; и внутреннее (тканевое) дыхание.

Внешнее дыхание — газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание включает обмен газов между атмосферным и альвеолярным воздухом, а также легочных капилляров и альвеолярным воздухом.

Это дыхание осуществляется в результате периодических изменений объема грудной полости. Увеличение ее объема обеспечивает вдох (инспирацию), уменьшение — выдох (экспирацию). Фазы вдоха и следующего за ним выдоха составляют . Во время вдоха атмосферный воздух через воздухоносные пути поступает в легкие, при выдохе часть воздуха покидает их.

Условия, необходимые для внешнего дыхания:

  • герметичность грудной клетки;
  • свободное сообщение легких с окружающей внешней средой;
  • эластичность легочной ткани.

Взрослый человек делает 15-20 дыханий в минуту. Дыхание физически тренированных людей более редкое (до 8-12 дыханий в минуту) и глубокое.

Наиболее распространенные методы исследования внешнего дыхания

Методы оценки дыхательной функции легких:

  • Пневмография
  • Спирометрия
  • Спирография
  • Пневмотахометрия
  • Рентгенография
  • Рентгеновская компьютерная томография
  • Ультразвуковое исследование
  • Магнитно-резонансная томография
  • Бронхография
  • Бронхоскопия
  • Радионуклидные методы
  • Метод разведения газов

Спирометрия — метод измерения объемов выдыхаемого воздуха с помощью прибора спирометра. Используются спирометры разного типа с турбиметрическим датчиком, а также водные, в которых выдыхаемый воздух собирается под колокол спирометра, помещенный в воду. По подъему колокола определяется объем выдыхаемого воздуха. В последнее время широко применяются датчики, чувствительные к изменению объемной скорости воздушного потока, подсоединенные к компьютерной системе. В частности, на этом принципе работает компьютерная система типа «Спирометр МАС-1» белорусского производства и др. Такие системы позволяют проводить не только спирометрию, но и спирографию, а также пневмотахографию).

Спирография - метод непрерывной регистрации объемов вдыхаемого и выдыхаемого воздуха. Получаемую при этом графическую кривую называют спирофаммой. По спирограмме можно определить жизненную емкость легких и дыхательные объемы, частоту дыхания и произвольную максимальную вентиляцию легких.

Пневмотахография - метод непрерывной регистрации объемной скорости потоков вдыхаемого и выдыхаемого воздуха.

Имеется много других методов исследования респираторной системы. Среди них плетизмография грудной клетки, прослушивание звуков, возникающих при прохождении воздуха через дыхательные пути и легкие, рентгеноскопия и рентгенография, определение содержания кислорода и углекислого газа в потоке выдыхаемого воздуха и др. Некоторые из этих методов рассматриваются ниже.

Объемные показатели внешнего дыхания

Соотношение величин легочных объемов и емкостей представлено на рис. 1.

При исследовании внешнего дыхания используются следующие показатели и их аббревиатура.

Общая емкость легких (ОЕЛ) — объем воздуха, находящийся в легких после максимально глубокого вдоха (4-9 л).

Рис. 1. Средние величины объемов и емкостей легких

Жизненная емкость легких

Жизненная емкость легких (ЖЕЛ) — объем воздуха, который может выдохнуть человек при максимально глубоком медленном выдохе, сделанном после максимального вдоха.

Величина жизненной емкости легких человека составляет 3-6 л. В последнее время в связи с внедрением пневмотахографической техники все чаще определяют так называемую форсированную жизненную емкость легких (ФЖЕЛ). При определении ФЖЕЛ испытуемый должен после максимально глубокого вдоха сделать максимально глубокий форсированный выдох. При этом выдох должен производиться с усилием, направленным на достижение максимальной объемной скорости выдыхаемого воздушного потока на протяжении всего выдоха. Компьютерный анализ такого форсированного выдоха позволяет рассчитать десятки показателей внешнего дыхания.

Индивидуальную нормальную величину ЖЕЛ называют должной жизненной емкостью легких (ДЖЕЛ). Ее рассчитывают в литрах по формулам и таблицам на основе учета роста, массы тела, возраста и пола. Для женщин 18-25-летнего возраста расчет можно вести по формуле

ДЖЕЛ = 3,8*Р + 0,029*В — 3,190; для мужчин того же возраста

Остаточный объем

ДЖЕЛ = 5,8*Р + 0,085*В — 6,908, где Р — рост; В — возраст (годы).

Величина измеренной ЖЕЛ считается пониженной, если это снижение составляет более 20% от уровня ДЖЕЛ.

Если для показателя внешнего дыхания применяют название «емкость», то это значит, что в состав такой емкости входят более мелкие подразделения, называемые объемами. Например, ОЕЛ состоит из четырех объемов, ЖЕЛ — из трех объемов.

Дыхательный объем (ДО) — это объем воздуха, поступающий в легкие и удаляемый из них за один дыхательный цикл. Этот показатель называют также глубиной дыхания. В состоянии покоя у взрослого человека ДО составляет 300-800 мл (15-20% от величины ЖЕЛ); месячного ребенка — 30 мл; годовалого — 70 мл; десятилетнего — 230 мл. Если глубина дыхания больше нормы, то такое дыхание называют гиперпноэ — избыточное, глубокое дыхание, если же ДО меньше нормы, то дыхание назвают олигопноэ — недостаточное, поверхностное дыхание. При нормальной глубине и частоте дыхания его называют эупноэ — нормальное, достаточное дыхание. Нормальная частота дыхания в покое у взрослых составляет 8-20 дыхательных циклов в минуту; месячного ребенка — около 50; годовалого — 35; десятилетнего — 20 циклов в минуту.

Резервный объем вдоха (РО вд) — объем воздуха, который человек может вдохнуть при максимально глубоком вдохе, сделанном после спокойного вдоха. Величина РО вд в норме составляет 50-60% от величины ЖЕЛ (2-3 л).

Резервный объем выдоха (РО выд) — объем воздуха, который человек может выдохнуть при максимально глубоком выдохе, сделанном после спокойного выдоха. В норме величина РО выд составляет 20-35% от ЖЕЛ (1-1,5 л).

Остаточный объем легких (ООЛ) — воздух, остающийся в дыхательных путях и легких после максимального глубокого выдоха. Его величина составляет 1-1,5 л (20-30% от ОЕЛ). В пожилом возрасте величина ООЛ нарастает из-за уменьшения эластической тяги легких, проходимости бронхов, снижения силы дыхательных мышц и подвижности грудной клетки. В возрасте 60 лет он уже составляет около 45% от ОЕЛ.

Функциональная остаточная емкость (ФОЕ) — воздух, остающийся в легких после спокойного выдоха. Эта емкость состоит из остаточного объема легких (ООЛ) и резервного объема выдоха (РО выд).

Не весь атмосферный воздух, поступающий в дыхательную систему при вдохе, принимает участие в газообмене, а лишь тот, который доходит до альвеол, имеющих достаточный уровень кровотока в окружающих их капиллярах. В связи с этим выделяют гак называемое мертвое пространство.

Анатомическое мертвое пространство (АМП) — это объем воздуха, находящийся в дыхательных путях до уровня респираторных бронхиол (на этих бронхиолах уже имеются альвеолы и возможен газообмен). Величина АМП составляет 140-260 мл и зависит от особенностей конституции человека (при решении задач, в которых необходимо учитывать АМП, а величина его не указана, объем АМП принимают равным 150 мл).

Физиологическое мертвое пространство (ФМП) — объем воздуха, поступающий в дыхательные пути и легкие и не принимающий участия в газообмене. ФМП больше анатомического мертвого пространства, так как включает его как составную часть. Кроме воздуха, находящегося в дыхательных путях, в состав ФМП входит воздух, поступающий в легочные альвеолы, но не обменивающийся газами с кровью из-за отсутствия или снижения кровотока в этих альвеолах (для этого воздуха иногда применяется название альвеолярное мертвое пространство). В норме величина функционального мертвого пространства составляет 20-35% от величины дыхательного объема. Возрастание этой величины свыше 35% может свидетельствовать о наличии некоторых заболеваний.

Таблица 1. Показатели легочной вентиляции

В медицинской практике важно учитывать фактор мертвого пространства при конструировании приборов для дыхания (высотные полеты, подводное плавание, противогазы), проведении ряда диагностических и реанимационных мероприятий. При дыхании через трубки, маски, шланги к дыхательной системе человека подсоединяется дополнительное мертвое пространство и, несмотря на возрастание глубины дыхания, вентиляция альвеол атмосферным воздухом может стать недостаточной.

Минутный объем дыхания

Минутный объем дыхания (МОД) — объем воздуха вентилируемый через легкие и дыхательные пути за 1 мин. Для определения МОД достаточно знать глубину, или дыхательный объем (ДО), и частоту дыхания (ЧД):

МОД = ДО * ЧД.

В покос МОД составляет 4-6 л/мин. Этот показатель часто называют также вентиляцией легких (отличать от альвеолярной вентиляции).

Альвеолярная вентиляция

Альвеолярная вентиляция легких (АВЛ) — объем атмосферного воздуха, проходящий через легочные альвеолы за 1 мин. Для расчета альвеолярной вентиляции надо знать величину АМП. Если она не определена экспериментально, то для расчета объем АМП берут равным 150 мл. Для расчета альвеолярной вентиляции можно пользоваться формулой

АВЛ = (ДО — АМП) . ЧД.

Например, если глубина дыхания у человека 650 мл, а частота дыхания 12, то АВЛ равно 6000 мл (650-150) . 12.

АВ = (ДО — ОМП) * ЧД = ДО альв * ЧД

  • АВ — альвеолярная вентиляция;
  • ДО альв — дыхательный объем альвеолярной вентиляции;
  • ЧД — частота дыхания

Максимальная вентиляция легких (МВЛ) — максимальный объем воздуха, который может быть провентилирован через легкие человека за 1 мин. МВЛ может быть определена при произвольной гипервентиляции в покое (дышать максимально глубоко и часто в покос допустимо не более 15 с). С помощью специальной техники МВЛ может быть определена во время выполнения человеком интенсивной физической работы. В зависимости от конституции и возраста человека норма МВЛ находится в границах 40-170 л/мин. У спортсменов МВЛ может достигать 200 л/мин.

Потоковые показатели внешнего дыхания

Кроме легочных объемов и емкостей для оценки состояния дыхательной системы используют так называемые потоковые показатели внешнего дыхания. Простейшим методом определения одного из них — пиковой объемной скорости выдоха — является пикфлоуметрия. Пикфлоуметры — простые и вполне доступные приборы для пользования в домашних условиях.

Пиковая объемная скорость выдоха (ПОС) — максимальная объемная скорость потока выдыхаемого воздуха, достигнутая в процессе форсированного выдоха.

С помощью прибора пневмотахометра можно определить не только пиковую объемную скорость выдоха, но и вдоха.

В условиях медицинского стационара все большее распространение получают приборы пневмотахографы с компьютерной обработкой получаемой информации. Приборы подобного типа позволяют на основе непрерывной регистрации объемной скорости воздушного потока, создаваемого в ходе выдоха форсированной жизненной емкости легких, рассчитать десятки показателей внешнего дыхания. Чаще всего определяются ПОС и максимальные (мгновенные) объемные скорости воздушного потока в момент выдоха 25, 50, 75% ФЖЕЛ. Их называют соответственно показателями МОС 25 , МОС 50 , МОС 75 . Популярно также определение ФЖЕЛ 1 — объема форсированного выдоха за время, равное 1 e. На основе этого показателя рассчитывается индекс (показатель) Тиффно — выраженное в процентах отношение ФЖЕЛ 1 к ФЖЕЛ. Регистрируется также кривая, отражающая изменение объемной скорости воздушного потока в процессе форсированного выдоха (рис. 2.4). При этом на вертикальной оси отображается объемная скорость (л/с), на горизонтальной — процент выдохнутой ФЖЕЛ.

На приведенном графике (рис. 2, верхняя кривая) вершина указывает величину ПОС, проекция момента выдоха 25% ФЖЕЛ на кривую характеризует МОС 25 , проекция 50% и 75% ФЖЕЛ соответствует величинам МОС 50 и МОС 75 . Диагностическую значимость имеют не только скорости потока в отдельных точках, но и весь ход кривой. Ее часть, соответствующая 0-25% выдыхаемой ФЖЕЛ, отражает проходимость для воздуха крупных бронхов, трахеи и , участок от 50 до 85% ФЖЕЛ — проходимость мелких бронхов и бронхиол. Прогиб на нисходящем участке нижней кривой в области выдоха 75-85% ФЖЕЛ указывает на снижение проходимости мелких бронхов и бронхиол.

Рис. 2. Потоковые показатели дыхания. Кривые ноток — объем здорового человека (верхняя), больного с обструктивнымн нарушениями проходимости мелких бронхов (нижняя)

Определение перечисленных объемных и потоковых показателей применяются в диагностике состояния системы внешнего дыхания. Для характеристики функции внешнего дыхания в клинике используются четыре варианта заключений: норма, обструктивные нарушения, рестриктивные нарушения, смешанные нарушения (сочетание обструктивных и рестриктивных нарушений).

Для большинства потоковых и объемных показателей внешнего дыхания выходящими за пределы нормы считаются отклонения их величины от должного (расчетного) значения более чем на 20%.

Обструктивные нарушения — это нарушения проходимости дыхательных путей, ведущие к увеличению их аэродинамического сопротивления. Такие нарушения могут развиваться в результате повышения тонуса гладких мышц нижних дыхательных путей, при гипертрофии или отеке слизистых оболочек (например, при острых респираторных вирусных инфекциях), скоплении слизи, гнойного отделяемого, при наличии опухоли или инородного тела, нарушении регуляции проходимости верхних дыхательных путей и других случаях.

О наличии обструктивных изменений дыхательных путей судят по снижению ПОС, ФЖЕЛ 1 , МОС 25 , МОС 50 , МОС 75 , МОС 25-75 , МОС 75-85 , величины индекса теста Тиффно и МВЛ. Показатель теста Тиффно в норме составляет 70-85%, снижение его до 60% расценивается как признак умеренного нарушения, а до 40% — резко выраженного нарушения проходимости бронхов. Кроме того, при обструктивных нарушениях увеличиваются такие показатели, как остаточный объем, функциональная остаточная емкость и общая емкость легких.

Рестриктивные нарушения — это уменьшение расправления легких при вдохе, снижение дыхательных экскурсий легких. Эти нарушения могут развиться из-за снижения растяжимости легких, при повреждениях грудной клетки, наличии спаек, скопления в плевральной полости жидкости, гнойного содержимого, крови, слабости дыхательных мышц, нарушении передачи возбуждения в нервно-мышечных синапсах и других причин.

Наличие рестриктивных изменений легких определяют по снижению ЖЕЛ (не менее 20% от должной величины) и уменьшению МВЛ (неспецифический показатель), а также снижению растяжимости легких и в ряде случаев по возрастанию показателя теста Тиффно (более 85%). При рестриктивных нарушениях уменьшаются общая емкость легких, функциональная остаточная емкость и остаточный объем.

Заключение о смешанных (обструктивных и рестриктивных) нарушениях системы внешнего дыхания делается при одновременном наличии изменений вышеперечисленных потоковых и объемных показателей.

Легочные объемы и емкости

Дыхательный объем - это объем воздуха, который вдыхает и выдыхает человек в спокойном состоянии; у взрослого человека он равен 500 мл.

Резервный объем вдоха — это максимальный объем воздуха, который может вдохнуть человек после спокойного вдоха; величина его равна 1,5-1,8 л.

Резервный объем выдоха - это максимальный объем воздуха, который может выдохнуть человек после спокойного выдоха; этот объем составляет 1-1,5 л.

Остаточный объем - это объем воздуха, который остается в легких после максимального выдоха; величина остаточного объема 1 -1,5 л.

Рис. 3. Изменение дыхательного объема, плеврального и альвеолярного давления при вентиляции легкого

Жизненная емкость легких (ЖЕЛ) — это максимальный объем воздуха, который может выдохнуть человек после самого глубокого вдоха. ЖЕЛ включает в себя резервный объем вдоха, дыхательный объем и резервный объем выдоха. Жизненная емкость легких определяется спирометром, а метод ее определения называют спирометрией. ЖЕЛ у мужчин 4-5,5 л, а у женщин — 3-4,5 л. Она больше в положении стоя, чем в положении сидя или лежа. Физическая тренировка приводит к увеличению ЖЕЛ (рис. 4).

Рис. 4. Спирограмма легочных объемов и емкостей

Функциональная остаточная емкость (ФОЕ) — объем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема и равна 2,5 л.

Общая емкость легких (ОЕЛ) — объем воздуха в легких по окончании полного вдоха. ОЕЛ включает в себя остаточный объем и жизненную емкость легких.

Мертвое пространство образует воздух, который находится в воздухоносных путях и не участвует в газообмене. При вдохе последние порции атмосферного воздуха входят в мертвое пространство и, не изменив своего состава, покидают его при выдохе. Объем мертвого пространства около 150 мл, или примерно 1/3, дыхательного объема при спокойном дыхании. Значит, из 500 мл вдыхаемого воздуха в альвеолы поступает лишь 350 мл. В альвеолах к концу спокойного выдоха находится около 2500 мл воздуха (ФОЕ), поэтому при каждом спокойном вдохе обновляется лишь 1/7 часть альвеолярного воздуха.

Один из основных методов оценки вентиляционной функции легких, применяемых в практике врачебно-трудовой экспертизы, - спирография , позволяющая определить статистические легочные объемы - жизненная емкость легких (ЖЕЛ), функциональная остаточная емкость (ФОЕ) , остаточный объем легких, общая емкость легких, динамические легочные объемы - дыхательный объем, минутный объем, максимальная вентиляция легких.

Способность полностью поддерживать газовый состав артериальной крови еще не является гарантией отсутствия легочной недостаточности у пациентов с бронхолегочной патологией. Артериализация крови может поддерживаться на близком к норме уровне за счет компенсаторного перенапряжения механизмов, обеспечивающих ее, что также является признаком легочной недостаточности. К таким механизмам относится прежде всего функция вентиляции легких .

Адекватность объемных параметров вентиляции определяется «динамическими легочными объемами », к которым относят дыхательный объем и минутный объем дыхания (МОД).

Дыхательный объем в покое у здорового человека составляет около 0,5 л. Должный МОД получают, умножая должную величину основного обмена на коэффициент 4,73. Полученные таким образом величины лежат в пределах 6-9 л. Однако сравнение фактической величины МОД (определяется в условиях основного обмена или близких к нему) с должной имеет смысл лишь для суммарной оценки изменений величины, которая может включать как изменения собственно вентиляции, так и нарушения потребления кислорода.

Для оценки собственно вентиляционных отклонений от нормы необходимо учитывать коэффициент использования кислорода (КИО 2) - отношение поглощенного О 2 (в мл/мин) к МОД (в л/мин).

На основании коэффициента использования кислорода можно судить об эффективности вентиляции. У здоровых людей КИ в среднем 40.

При КИО 2 ниже 35мл/л вентиляция оказывается избыточной по отношению к потребленному кислороду (гипервентиляция ), при увеличении КИО 2 выше 45 мл/л речь идет о гиповентиляции .

Другой способ выражения газообменной эффективности легочной вентиляции - определение дыхательного эквивалента , т.е. того объема вентилируемого воздуха, который приходится на 100 мл потребленного кислорода: определяют отношение МОД к количеству потребленного кислорода (или углекислоты - ДЭ углекислоты).

У здорового человека 100 мл потребляемого кислорода или выделенной углекислоты обеспечиваются объемом вентилируемого воздуха, близким к 3 л/мин.

У больных с патологией легких при функциональных нарушениях газообменная эффективность оказывается сниженной, и потребление 100 мл кислорода требует большего, чем у здоровых объема вентиляции.

При оценке эффективности вентиляции увеличение частоты дыхания (ЧД) рассматривается как типичный признак дыхательной недостаточности, это целесообразно учитывать при трудовой экспертизе: при I степени дыхательной недостаточности ЧД не превышает 24, при II степени достигает 28 , при III степени ЧД очень большая.

Фазы дыхания.

Процесс внешнего дыхания обусловлен изменением объема воздуха в легких в течение фаз вдоха и выдоха дыхательного цикла. При спокойном дыхании соотношение длительности вдоха к выдоху в дыхательном цикле равняется в среднем 1:1,3. Внешнее дыхание человека характеризуется частотой и глубиной дыхательных движений. Частота дыхания человека измеряется количеством дыхательных циклов в течение 1 мин и ее величина в покое у взрослого человека варьирует от 12 до 20 в 1 мин. Этот показатель внешнего дыхания возрастает при физической работе, повышении температуры окружающей среды, а также изменяется с возрастом. Например, у новорожденных частота дыхания равна 60-70 в 1 мин, а у людей в возрасте 25-30 лет - в среднем 16 в 1 мин. Глубина дыхания определяется по объему вдыхаемого и выдыхаемого воздуха в течение одного дыхательного цикла. Произведение частоты дыхательных движений на их глубину характеризует основную величину внешнего дыхания - вентиляцию легких . Количественной мерой вентиляции легких является минутный объем дыхания - это объем воздуха, который человек вдыхает и выдыхает за 1 мин. Величина минутного объема дыхания человека в покое варьирует в пределах 6-8 л. При физической работе у человека минутный объем дыхания может возрастать в 7-10 раз.

Рис. 10.5. Объемы и емкости воздуха в легких человека и кривая (спирограмма) изменения объема воздуха в легких при спокойном дыхании, глубоком вдохе и выдохе . ФОЕ - функциональная остаточная емкость.

Легочные объемы воздуха . В физиологии дыхания принята единая номенклатура легочных объемов у человека, которые заполняют легкие при спокойном и глубоком дыхании в фазу вдоха и выдоха дыхательного цикла (рис. 10.5). Легочный объем, который вдыхается или выдыхается человеком при спокойном дыхании, называется дыхательным объемом . Его величина при спокойном дыхании составляет в среднем 500 мл. Максимальное количество воздуха, которое может вдохнуть человек сверх дыхательного объема, называется резервным объемом вдоха (в среднем 3000 мл). Максимальное количество воздуха, которое может выдохнуть человек после спокойного выдоха, называется резервным объемом выдоха (в среднем 1100 мл). Наконец, количество воздуха, которое остается в легких после максимального выдоха, называется остаточным объемом, его величина равна примерно 1200 мл.

Сумма величин двух легочных объемов и более называется легочной емкостью . Объем воздуха в легких человека характеризуется инспираторной емкостью легких, жизненной емкостью легких и функциональной остаточной емкостью легких. Инспираторная емкость легких (3500 мл) представляет собой сумму дыхательного объема и резервного объема вдоха. Жизненная емкость легких (4600 мл) включает в себя дыхательный объем и резервные объемы вдоха и выдоха. Функциональная остаточная емкость легких (1600 мл) представляет собой сумму резервного объема выдоха и остаточного объема легких. Сумма жизненной емкости легких и остаточного объема называется общей емкостью легких, величина которой у человека в среднем равна 5700 мл.



При вдохе легкие человека за счет сокращения диафрагмы и наружных межреберных мышц начинают увеличивать свой объем с уровня , и его величина при спокойном дыхании составляет дыхательный объем , а при глубоком дыхании - достигает различных величин резервного объема вдоха. При выдохе объем легких вновь возвращается к исходному уровню функциональной остаточной емкости пассивно, за счет эластической тяги легких. Если в объем выдыхаемого воздуха начинает входит воздух функциональной остаточной емкости , что имеет место при глубоком дыхании, а также при кашле или чиханье, то выдох осуществляться за счет сокращения мышц брюшной стенки. В этом случае величина внутриплеврального давления, как правило, становится выше атмосферного давления, что обусловливает наибольшую скорость потока воздуха в дыхательных путях.

2. Техника проведения спирографии .

Исследование проводят утром натощак. Перед исследованием пациенту рекомендуется находиться в спокойном состоянии на протяжении 30 мин, а также прекратить прием бронхолитиков не позже чем за 12 часов до начала исследования.

Спирографическая кривая и показатели легочной вентиляции приведены на рис. 2.

Статические показатели (определяют во время спокойного дыхания ).

Главными переменными, использующимися для отображения наблюдаемых показателей внешнего дыхания и для построения показателей-конструктов являются: объём потока дыхательных газов, V (л ) и время t ©. Отношения между этими переменными могут быть представлены в виде графиков или диаграмм. Все они по являются спирограммами.

График зависимости объёма потока смеси дыхательных газов от времени называют спирограмма: объём потока – время .

График взаимозависимости объёмной скорости потока смеси дыхательных газов и объёма потока называют спирограмма: объёмная скорость потока – объём потока.

Измеряют дыхательный объем (ДО) - средний объем воздуха, который больной вдыхает и выдыхает во время обычного дыхания в состоянии покоя. В норме он составляет 500-800 мл. Часть ДО, которая принимает участие в газообмене, называется альвеолярным объемом (АО) и в среднем равняется 2/3 величины ДО. Остаток (1/3 величины ДО) составляет объем функционального мертвого пространства (ФМП).

После спокойного выдоха пациент максимально глубоко выдыхает - измеряется резервный объем выдоха (РОвыд), который в норме составляет 1000-1500 мл.

После спокойного вдоха делается максимально глубокий вдох - измеряется резервный объем вдоха (Ровд). При анализе статических показателей рассчитывается емкость вдоха (Евд) - сумма ДО и Ровд, которая характеризует способность легочной ткани к растяжению, а также жизненная емкость легких (ЖЕЛ) - максимальный объем, который можно вдохнуть после максимально глубокого выдоха (сумма ДО, РО ВД и Ровыд в норме составляет от 3000 до 5000 мл).

После обычного спокойного дыхания проводится дыхательный маневр: делается максимально глубокий вдох, а затем - максимально глубокий, самый резкий и длительный (не менее 6 с) выдох. Так определяется форсированная жизненная емкость легких (ФЖЕЛ) - объем воздуха, который можно выдохнуть при форсированном выдохе после максимального вдоха (в норме составляет 70-80 % ЖЕЛ).

Как заключительный этап исследования проводится запись максимальной вентиляции легких (МВЛ) - максимального объема воздуха, который может быть провентилирован легкими за I мин. МВЛ характеризует функциональную способность аппарата внешнего дыхания и в норме составляет 50-180 л. Снижение МВЛ наблюдается при уменьшении легочных объемов вследствие рестриктивных (ограничительных) и обструктивных нарушений легочной вентиляции.

При анализе спирографической кривой, полученной в маневре с форсированным выдохом , измеряют определенные скоростные показатели (рис. 3):

1) объем форсированного выдоха за первую секунду (ОФВ 1) - объем воздуха, который выдыхается за первую секунду при максимально быстром выдохе; он измеряется в мл и высчитывается в процентах к ФЖЕЛ; здоровые люди за первую секунду выдыхают не менее 70 % ФЖЕЛ;

2) проба или индекс Тиффно - соотношение ОФВ 1 (мл)/ЖЕЛ (мл), умноженное на 100 %; в норме составляет не менее 70-75 %;

3) максимальная объемная скорость воздуха на уровне выдоха 75 % ФЖЕЛ (МОС 75), оставшейся в легких;

4) максимальная объемная скорость воздуха на уровне выдоха 50 % ФЖЕЛ (МОС 50), оставшейся в легких;

5) максимальная объемная скорость воздуха на уровне выдоха 25 % ФЖЕЛ (МОС 25), оставшейся в легких;

6) средняя объемная скорость форсированного выдоха, вычисленная в интервале измерения от 25 до 75 % ФЖЕЛ (СОС 25-75).

Обозначения на схеме .
Показатели максимального форсированного выдоха:
25 ÷ 75% FEV - объёмная скорость потока в среднем интервале форсированного выдоха (между 25% и 75%
жизненной ёмкости лёгких),
FEV1 - объём потока за первую секунду форсированного выдоха.


Рис. 3 . Спирографическая кривая, полученная в маневре форсированного выдоха. Расчет показателей ОФВ 1 и СОС 25-75

Вычисление скоростных показателей имеет большое значение в выявлении признаков бронхиальной обструкции. Уменьшение индекса Тиффно и ОФВ 1 является характерным признаком заболеваний, которые сопровождаются снижением бронхиальной проходимости - бронхиальной астмы, хронического обструктивного заболевания легких, бронхоэктатической болезни и пр. Показатели МОС имеют наибольшую ценность в диагностике начальных проявлений бронхиальной обструкции. СОС 25-75 отображает состояние проходимости мелких бронхов и бронхиол. Последний показатель является более информативным, чем ОФВ 1 , для выявления ранних обструктивных нарушений.
В связи с тем, что в Украине, Европе и США существует некоторое различие в обозначении легочных объемов, емкостей и скоростных показателей, характеризующих легочную вентиляцию, приводим обозначения указанных показателей на русском и английском языках (табл. 1).

Таблица 1. Наименование показателей легочной вентиляции на русском и английском языках

Наименование показателя на русском языке Принятое сокращение Наименование показателя на английском языке Принятое сокращение
Жизненная емкость легких ЖЕЛ Vital capacity VC
Дыхательный объем ДО Tidal volume TV
Резервный объем вдоха Ровд Inspiratory reserve volume IRV
Резервный объем выдоха Ровыд Expiratory reserve volume ERV
Максимальная вентиляция легких МВЛ Maximal voluntary ventilation MW
Форсированная жизненная емкость легких ФЖЕЛ Forced vital capacity FVC
Объем форсированного выдоха за первую секунду ОФВ1 Forced expiratory volume 1 sec FEV1
Индекс Тиффно ИТ, или ОФВ 1 /ЖЕЛ % FEV1 % = FEV1/VC %
Максимальная объемная скорость в момент выдоха 25 % ФЖЕЛ, оставшейся в легких МОС 25 Maximal expiratory flow 25 % FVC MEF25
Forced expiratory flow 75 % FVC FEF75
Максимальная объемная скорость в момент выдоха 50 % ФЖЕЛ, оставшейся в легких МОС 50 Maximal expiratory flow 50 % FVC MEF50
Forced expiratory flow 50 % FVC FEF50
Максимальная объемная скорость в момент выдоха 75 % ФЖЕЛ, оставшейся в легких МОС 75 Maximal expiratory flow 75 % FVC MEF75
Forced expiratory flow 25 % FVC FEF25
Средняя объемная скорость выдоха в интервале от 25 % до 75 % ФЖЕЛ СОС 25-75 Maximal expiratory flow 25-75 % FVC MEF25-75
Forced expiratory flow 25-75 % FVC FEF25-75

Таблица 2. Наименование и соответствие показателей легочной вентиляции в различных странах

Украина Европа США
мос 25 MEF25 FEF75
мос 50 MEF50 FEF50
мос 75 MEF75 FEF25
СОС 25-75 MEF25-75 FEF25-75

Все показатели легочной вентиляции изменчивы. Они зависят от пола, возраста, веса, роста, положения тела, состояния нервной системы больного и прочих факторов. Поэтому для правильной оценки функционального состояния легочной вентиляции абсолютное значение того или иного показателя является недостаточным. Необходимо сопоставлять полученные абсолютные показатели с соответствующими величинами у здорового человека того же возраста, роста, веса и пола - так называемыми должными показателями. Такое сопоставление выражается в процентах по отношению к должному показателю. Патологическими считаются отклонения, превышающие 15-20 % от величины должного показателя.

5. СПИРОГРАФИЯ С РЕГИСТРАЦИЕЙ ПЕТЛИ «ПОТОК-ОБЪЁМ»

Спирография с регистрацией петли «поток-объем» - современный метод исследования легочной вентиляции, который заключается в определении объемной скорости движения потока воздуха вдыхательных путях и его графическом отображением в виде петли «поток-объем» при спокойном дыхании пациента и при выполнении им определенных дыхательных маневров. За рубежом этот метод называют спирометрией .

Целью исследования является диагностика вида и степени нарушений легочной вентиляции на основании анализа количественных и качественных изменений спирографических показателей.
Показания и противопоказания к применению метода аналогичны таковым для классической спирографии.

Методика проведения . Исследование проводят в первой половине дня, независимо от приема еды. Пациенту предлагают закрыть оба носовых хода специальным зажимом, взять индивидуальную простерилизованную насадку-мундштук в рот и плотно обхватить ее губами. Пациент в положении сидя дышит через трубку по открытому контуру, практически не испытывая сопротивления дыханию
Процедура выполнения дыхательных маневров с регистрацией кривой «поток-объем» форсированного дыхания идентична той, которая выполняется при записи ФЖЕЛ во время проведения классической спирографии. Больному надлежит объяснить, что в пробе с форсированным дыханием выдохнуть в прибор следует так, будто нужно погасить свечи на праздничном торте. После некоторого периода спокойного дыхания пациент делает максимально глубокий вдох, в результате чего регистрируется кривая эллиптической формы (кривая АЕВ). Затем больной делает максимально быстрый и интенсивный форсированный выдох. При этом регистрируется кривая характерной формы, которая у здоровых людей напоминает треугольник (рис. 4).

Рис. 4. Нормальная петля (кривая) соотношения объемной скорости потока и объема воздуха при проведении дыхательных маневров. Вдох начинается в точке А, выдох - в точке В. ПОСвыд регистрируется в точке С. Максимальный экспираторный поток в середине ФЖЕЛ соответствует точке D, максимальный инспираторный поток - точке Е

Спирограмма: объёмная скорость потока – объём потока форсированного вдоха/выдоха .

Максимальная экспираторная объемная скорость потока воздуха отображается начальной частью кривой (точка С, где регистрируется пиковая объемная скорость выдоха - ПОС ВЫД)- После этого объемная скорость потока уменьшается (точка D, где регистрируется МОС 50), и кривая возвращается к изначальной позиции (точка А). При этом кривая «поток-объем» описывает соотношение между объемной скоростью воздушного потока и легочным объемом (емкостью легких) во время дыхательных движений.
Данные скоростей и объемов потока воздуха обрабатываются персональным компьютером благодаря адаптированному программному обеспечению. Кривая «поток-объем» при этом отображается на экране монитора и может быть распечатана на бумаге, сохранена на магнитном носителе или в памяти персонального компьютера.
Современные аппараты работают со спирографическими датчиками в открытой системе с последующей интеграцией сигнала потока воздуха для получения синхронных значений объемов легких. Рассчитанные компьютером результаты исследования печатаются вместе с кривой «поток-объем» на бумаге в абсолютных значениях и в процентах к должным величинам. При этом на оси абсцисс откладывается ФЖЕЛ (объем воздуха), а на оси ординат - поток воздуха, измеряемый в литрах в секунду (л/с) (рис. 5).

Рис. 5. Кривая «поток-объем» форсированного дыхания и показатели легочной вентиляции у здорового человека


Рис. 6 Схема спирограммы ФЖЕЛ и соответствующей кривой форсированного выдоха в координатах «поток-объем»: V - ось объема; V" - ось потока

Петля «поток-объем» представляет собой первую производную классической спирограммы. Хотя кривая «поток-объем» содержит в основном ту же информацию, что и классическая спирограмма, наглядность соотношения между потоком и объемом позволяет более глубоко проникнуть в функциональные характеристики как верхних, так и нижних дыхательных путей (рис. 6). Расчет по классической спирограмме высокоинформативных показателей МОС 25 , МОС 50 , МОС 75 имеет ряд технических трудностей при выполнении графических изображений. Поэтому его результаты не обладают высокой точностью В связи с этим лучше определять указанные показатели по кривой «поток-объем».
Оценка изменений скоростных спирографических показателей осуществляется по степени их отклонения от должной величины. Как правило, за нижнюю границу нормы принимается значение показателя потока, что составляет 60 % от должного уровня.

MICRO MEDICAL LTD (UNITED KINGDOM)
Спирограф MasterScreen Pneumo Спирограф FlowScreen II

Спирометр-спирограф СпироС-100 АЛЬТОНИКА, ООО (РОССИЯ)
Спирометр СПИРО-СПЕКТР НЕЙРО-СОФТ (РОССИЯ)

Легочные объемы и емкости

В процессе легочной вентиляции непрерывно обновляется газовый состав альвеолярного воздуха. Величина легочной вентиляции оп­ределяется глубиной дыхания, или дыхательным объемом, и частотой дыхательных движений. Во время дыхательных движений легкие человека заполняются вдыхаемым воздухом, объем которого явля­ется частью общего объема легких. Для количественного описания легочной вентиляции общую емкость легких разделили на несколько компонентов или объемов. При этом легочной емкостью называется сумма двух и более объемов.

Легочные объемы подразделяют на статические и динамические. Статические легочные объемы измеряют при завершенных дыха­тельных движениях без лимитирования их скорости. Динамические легочные объемы измеряют при проведении дыхательных движений с ограничением времени на их выполнение.

Легочные объемы . Объем воздуха в легких и дыхательных путях зависит от следующих показателей: 1) антропометрических инди­видуальных характеристик человека и дыхательной системы; 2) свойств легочной ткани; 3) поверхностного натяжения альвеол; 4) силы, развиваемой дыхательными мышцами.

Дыхательный объем (ДО) - объем воздуха, который вды­хает и выдыхает человек во время спокойного дыхания. У взрослого человека ДО составляет примерно 500 мл. Величина ДО зависит от условий измерения (покой, нагрузка, положение тела). ДО рас­считывают как среднюю величину после измерения примерно шести спокойных дыхательных движений.

Резервный объем вдоха (РОвд) - максимальный объем воздуха, который способен вдохнуть испытуемый после спокойного вдоха. Величина РОвд составляет 1,5-1,8 л.

Резервный объем выдоха (РОвыд) - максимальный объем воздуха, который человек дополнительно может выдохнуть с уровня спокойного выдоха. Величина РОвыд ниже в горизонтальном поло­жении, чем в вертикальном, уменьшается при ожирении. Она равна в среднем 1,0-1,4 л.

Остаточный объем (ОО) - объем воздуха, который остается в легких после максимального выдоха. Величина остаточного объема равна 1,0-1,5 л.

Исследование динамических легочных объемов представляет на­учный и клинический интерес и их, описание выходит за рамки курса нормальной физиологии.

Легочные емкости. Жизненная емкость легких (ЖЕЛ) включает в себя дыхательный объем, резервный объем вдоха, ре­зервный объем выдоха. У мужчин среднего возраста ЖЕЛ варьирует в пределах 3,5-5,0 л и более. Для женщин типичны более низкие величины (3,0-4,0 л). В Зависимости от методики измерения ЖЕЛ различают ЖЕЛ вдоха, когда после полного выдоха производится максимально глубокий вдох и ЖЕЛ выдоха, когда после полного вдоха производится максимальный выдох.

Емкость вдоха (Евд) равна сумме дыхательного объема и резервного объема вдоха. У человека Евд составляет в среднем 2,0-2,3 л.

Функциональная остаточная емкость (ФОЕ) - объ­ем воздуха в легких после спокойного выдоха. ФОЕ является суммой резервного объема выдоха и остаточного объема. ФОЕ измеряется методами газовой дилюции, или разведения газов, и плетизмографически. На величину ФОЕ существенно влияет уровень физической активности человека и положение тела: ФОЕ меньше в горизон­тальном положении тела, чем в положении сидя или стоя. ФОЕ уменьшается при ожирении вследствие уменьшения общей растя­жимости грудной клетки.

Общая емкость легких (ОЕЛ) - объем воздуха в легких по окончании полного вдоха. ОЕЛ рассчитывают двумя способами: ОЕЛ - ОО + ЖЕЛ или ОЕЛ - ФОЕ + Евд. ОЕЛ может быть измерена с помощью плетизмографии или методом газовой дилюции.

Измерение легочных объемов и емкостей имеет клиническое значение при исследовании функции легких у здоровых лиц и при диагностике заболевания легких человека. Измерение легочных объемов и емкостей обычно производят методами спирометрии, пневмотахометрии с интеграцией показателей и бодиплетизмографии. Статические легочные объемы могут снижаться при патологических состояниях, приводящих к ограничению расправления легких. К ним относятся нейромышечные заболевания, болезни грудной клетки, живота, поражения плевры, повышающие жесткость легочной ткани, и заболевания, вызывающие уменьшение числа функционирующих альвеол (ателектаз, резекция, рубцовые изменения легких).

Для сопоставимости результатов измерений газовых объемов и емкостей полученные данные должны соотноситься с условиями в легких, где температура альвеолярного воздуха соответствует температуре тела, воздух находится при определенном давлении и насыщен водяными парами. Это состояние называется стандар­тным и обозначается буквами BTPS (body temperature, pressure, saturated).