Обмен веществ и энергии физиология человека. Физиология обмена веществ и энергии

Обмен веществ в организме. Пластическая и энергетическая роль питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества после пищеварительных превращений используются как пластический материал. Энергия, образующаяся при этих превращениях восполняет энергозатраты организма.

Синтез сложных специфичных веществ организма из простых соединений, всасывающихся в кровь из пищеварительного канала, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Два этих процесса неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. С их помощью энергия образующаяся в результате диссимиляции передается для процессов ассимиляции.

Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков организма. Из 20 аминокислот, образующих белки 10 являются незаменимыми. Т.е. не могут образовываться в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин.

Состояние белкового обмена оценивается по азотистому балансу . Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие . Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом . В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания, сопровождавшихся похуданием и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс . Его возникновение объясняется распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка которое полностью обеспечивает потребности организма называется белковым оптимумом . Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом . ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.

Жирами организма являются триглицериды, фосфолипиды и стерины. Они также имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и органелл. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Кроме того, они являются аккумулятором энергии в организме потому что откладываются в жировых депо и используются по мере необходимости. Жир депо составляют около 15% веса тела. Покрывая внутренние органы жировая ткань выполняет и пластическую функцию. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются источниками воды, потому что при окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов. Содержащийся в его жировых клетках полипептид тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Они не образуются в организме. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль, т.к. служат основным источником энергии для клеток. Потребности нейронов покрываются исключительно глюкозой. Углеводы аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение. Глюкоза необходима для образования нуклеотидов и синтеза некоторых аминокислот.

Методы измерения энергетического баланса организма

Соотношение между количеством энергии, поступившей в организм с пищей, и энергии, выделенной организмом во внешнюю среду называется энергетическим балансом организма. Существует 2 метода определения выделяемой организмом энергии.

1. Прямая калориметрия . Принцип прямой калориметрии основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой теплоообменных труб, в которых циркулирует и нагревается вода.

2. Непрямая калориметрия . Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Т.е. полном газовом анализе. Это соотношение называется дыхательным коэффициентом (ДК).

Величина дыхательного коэффициента определяется тем, какое вещество окисляется в клетках организма. Например в молекуле углеводов атомов кислорода много, Поэтому на их окисление кислорода идет меньше и их дыхательный коэффициент равен 1. В молекуле липидов кислорода значительно меньше, поэтому дыхательный коэффициент при их окислении 0,7. Дыхательный коэффициент белков 0,8. При смешанном питании его величина 0,85-0,9. Дыхательный коэффициент становится больше 1 при тяжелой физической работе, ацидозе, гипервентиляции и преобразовании в организме углеводов в жиры. Меньше 0,7 он бывает при переходе жиров в углеводы. Исходя из дыхательного коэффициента рассчитывается калорический эквивалент кислорода, т.е. количество энергии выделяемой организмом при потреблении 1 л кислорода. Его величина также зависит от характера окисляемых веществ. Для углеводов он составляет 5 ккал, белков 4,5 ккал, жиров 4,7 ккал. Непрямая калориметрия в клинике производится с помощью аппаратов "Метатест-2", "Спиролит".

Величина поступившей в организм энергии определяется количеством и энергетической ценностью пищевых веществ. Их энергетическую ценность определяют путем сжигания в бомбе Бертло в атмосфере чистого кислорода. Таким путем получают физический калорический коэффициент. Для белков он равен 5,8 ккал/г, углеводов 4,1 ккал/г, жиров 9,3 ккал/г. Для расчетов используют физиологический калорический коэффициент. Для углеводов и жиров он соответствует физическому, а для белков составляет 4,1 ккал/г. Его меньшая величина для белков объясняется тем, что в организме они расщепляются не до углекислого газа и воды, а да азотсодержащих продуктов.

Основной обмен

Количество энергии, которое затрачивается организмом на выполнение жизненно важных функций называется основным обменом. Это затраты энергии на поддержание постоянства температуры тела, работу внутренних органов, нервной системы, желез. Основной обмен измеряется методами прямой и непрямой калориметрии при базисных условиях, т.е. лежа с расслабленными мышцами, при температуре комфорта, натощак. Согласно закону поверхности, сформулированному в 19 веке Рубнером и Рише, величина основного прямопропорциональна площади поверхности тела. Это связано с тем, что наибольшее количество энергии тратится на поддержание постоянства температуры тела. Помимо этого на величину основного обмена влияют пол, возраст, условия окружающей среды, характер питания, состояние желез внутренней секреции, нервной системы. У мужчин основной обмен на 10% больше, чем у женщин. У детей его величина относительно веса тела больше, чем в зрелом возрасте, а у пожилых наоборот меньше. В холодном климате или зимой он возрастает, летом снижается. При гипертиреозе он значительно увеличивается, а гипотиреозе снижается. В среднем величина основного обмена у мужчин 1700 ккал/сут., а у женщин 1550.

Общий обмен энергии

Общий обмен энергии это сумма основного обмена, рабочей прибавки и энергии специфически-динамического действия пищи. Рабочая прибавка это энергетические затраты на физическую и умственную работу. По характеру производственной деятельности и энергозатратам выделяют следующие группы работающих:

1. Лица умственного труда (преподаватели, студенты, врачи и т.д.). Их энергозатраты 2200-3300 ккал/сут.

2. Работники занятые механизированным трудом (сборщики на конвейере). 2350-3500 ккал/сут.

3. Лица занятые частично механизированным трудом (шофера). 2500-3700 ккал/сут.

4. Занятые тяжелым немеханизированным трудом (грузчики). 2900-4200 ккал/сут. Специфически-динамическое действие пищи это энергозатраты на усвоение питательных веществ. Наиболее выражено это действие у белков, меньше у жиров и углеводов. В частности белки повышают энергетический обмен на 30%, а жиры и углеводы на 15%.

Различают пластический и энергетический обмен. Пластический обмен предстоит студентам изучить самостоятельно , учитывая полную его характеристику в пройденном курсе биохимии.

Энергетический обмен.

Источником свободной энергии для всех живых существ служит Солнце. Зеленые растения (аутотрофы) за счет фотосинтеза создают в течение года примерно 10 10 тонн питательных веществ. Гетеротрофы сами не могут «питаться» светом. Они получают свободную энергию, употребляя в качестве пищи растения или части тела других животных. Пищеварение обеспечивает поступление в клетки продуктов гидролиза углеводов, белков и жиров, в которых заключена свободная энергия солнечного света.

В соответствии с данными учебника В.О. Самойлова, основным способом использования свободной энергии питательных веществ организмом является их биологическое окисление. Оно происходит на внутренней мембране митохондрии, где сосредоточены ферменты, катализирующие биологическое окисление, сопряженное с фосфорилированием (образованием АТФ из АДФ), - клеточное дыхание. Синтез АТФ сопровождается значительными тепловыми потерями, составляющими половину всей тепловой энергии, выделяемой организмом в условиях основного обмена . Энергия, запасенная АТФ при его синтезе, используется организмом для совершения различных видов (форм) полезной работы. Она освобождается при гидролизе АТФ и переносится на различные компоненты клетки посредством их фосфорилирования, причем мышечная работа отнюдь не является самой энергоемкой в жизни человека. Огромны затраты свободной энергии на синтез сложных биомолекул. Так, для синтеза одного моля белка требуется от 12 000 до 200 000 кДж свободной энергии. Следовательно, в «сборке» одной молекулы белка участвуют от 1000 до 16 000 молекул АТФ (с учетом КПД процесса, составляющего около 40%). Так, образование одной молекулы белка с молекулярной массой 60 кДа требует гидролитического расщепления полутора тысяч молекул АТФ. Для синтеза молекулы РНК необходимо около 6000 молекул АТФ. Еще больше энергии требуется для образования ДНК - на созидание 1 молекулы ДНК тратится 120 000 000 молекул АТФ. Однако количество синтезируемых молекул белка значительно больше, чем нуклеиновых кислот, в силу разнообразия его функций и беспрестанного быстрого обновления. Поэтому именно синтез белка в организме наиболее энергоемок по сравнению с другими биосинтетическими процессами (за исключением синтеза АТФ). Масса АТФ, синтезируемого взрослым человеком в течение одних суток, равна примерно массе его тела. Полезно иметь в виду, что в течение каждого часа жизни у млекопитающих белок стромы клеток обновляется в среднем на 1%, а белки-ферменты - на 10%. У человека массой 70 кг ежечасно обновляется около 100 г белка.

Таким образом, первой формой полезной работы биологической системы является химическая, обеспечивающая биосинтез. Другая важная «статья» расхода свободной энергии в организме - поддержание физико-химических градиентов на клеточных мембранах, т. е. осмотическая работа. В живой клетке концентрация ионов и органических веществ иная, чем в межклеточной среде, т. е. на клеточной мембране существуют концентрационные градиенты. Различие концентрации ионов и молекул приводит к возникновению и других градиентов: осмотического, электрического, фильтрационного и т. д.

Обилие градиентов характерно для биологических систем, при их умирании градиенты падают и ликвидируются. Только живые организмы способны поддерживать неравновесное состояние своих сред, выражением чего и служат градиенты. Они являются тем потенциальным ресурсом, который обеспечивает совершение клеткой в нужный момент свойственной ей работы: генерации нервного импульса нейронами, сокращений мышечных волокон для обеспечения движений, транспорта веществ через клеточные мембраны в процессах всасывания, секреции, выделения и т. д. Физико-химические градиенты организма - основа его активности. Он затрачивает значительную энергию на их создание и поддержание.

Важно понять, что именно градиент, а не просто разность величин данного физико-химического параметра, служит движущей силой многих жизненных процессов, например транспорта веществ в организме. Во всех уравнениях, выражающих закономерности процессов переноса веществ и энергии, аргументами являются градиенты.

Наличие градиентов вызывает непрерывный перенос веществ через клеточные мембраны (пассивный транспорт). Он должен был бы уменьшить величину градиентов (выравнять концентрации и другие физико-химические параметры). Однако в нормально функционирующей клетке градиенты на мембране стабильно под­держиваются на определенном уровне благодаря активному транспорту, который обеспечивается энергией макроэргических соединений. КПД этого процесса - около 20-25%. Такой же КПД характерен для преобразования энергии макроэргов в электрическую работу, поскольку биоэлектрогенез обеспечивается транспортом ионов через биологическую мембрану, т. е. осмотическими процессами.

Наконец, организм совершает механическую работу, для которой также необходим гидролиз АТФ. Коэффициент полезного действия мышечного сокращения и немышечных форм двигательной активности - обычно не более 20%.

Параллельно с совершением работы организм преобразует свободную энергию питательных веществ в тепло. В конечном итоге вся энергия, полученная организмом с пищей, превращается в тепловую и в такой форме отдается им окружающей среде. Принято выделять несколько этапов в этом теплообразовании. Прежде всего, тепловые потери присущи биологическому окислению питательных веществ, в ходе которого синтезируется АТФ. Выделяющуюся при этом тепловую энергию называютпервичным теплом. Все остальное теплообразование (при синтезе макромолекул, поддержании градиентов за счет активного транспорта веществ, биоэлектрогенезе, мышечных сокращениях, других формах двигательной активности, а также при трении в мышцах, кровеносных сосудах, суставах и т. д., при распаде белков и других макромолекул, при пассивном транспорте веществ) называютвторичным, теплом.

Расход энергии (энергетические траты) организма разделить на основной обмен и рабочий (добавочный) обмен.

Основному обмену соответствует минимальный расход энергии, обеспечивающий гомеостазис организма в стандартных условиях. Измеряется он у бодрствующего человека, утром, в условиях полного эмоционального и физического покоя, при температуре комфорта, натощак, в горизонтальном положении тела.

Энергия основного обмена расходуется на синтез клеточных структур, поддержание постоянной температуры тела, деятельности внутренних органов, тонуса скелетных мышц и сокращения дыхательных мышц.

Интенсивность основного обмена зависит от возраста, пола, длины и массы тела. Наиболее высокий основной обмен, отнесенный к 1 кг массы тела, характерен для детей в возрасте 6 мес, затем он постепенно падает и после периода полового созревания приближается к уровню взрослых. После 40 лет основной обмен человека начинает постепенно снижаться.

Половина всего энергорасхода основного обмена приходится на печень и скелетные мышцы. У лиц женского пола в связи с меньшим относительным количеством в организме мышечной ткани основной обмен ниже, чем у лиц мужского пола. Мужские половые гормоны повышают основной обмен на 10- 15 %, женские половые гормоны таким действием не обладают.

Примерным стандартом основного обмена взрослого человека может быть величина 4,2 кДж (1 ккал) на 1 кг массы тела в 1 ч. При массе тела, равной 70 кг, основной обмен мужчины составляет в сутки 7100 кДж, или 1700 ккал.

Рабочий обмен - это совокупность основного обмена и энергетических трат организма, обеспечивающих его жизнедеятельность в условиях терморегуляторной, эмоциональной, пищевой и рабочей нагрузок.

Терморегуляторное повышение интенсивности обмена веществ и энергии развивается в условиях охлаждения и у человека может достигать 300 %.

При эмоциях увеличение расхода энергии у взрослого человека составляет обычно 40- 90 % от уровня основного обмена и связано главным образом с вовлечением мышечных реакций - фазных и тонических. Прослушивание радиопередач, вызывающих эмоциональные реакции, может повысить расход энергии на 50 %, у детей при крике затраты энергии могут повышаться втрое.

Во время сна уровень метаболизма на 10- 15 % ниже, чем в условиях бодрствования, что обусловлено расслаблением мышц, а также снижением активности симпатической нервной системы, снижением выработки гормонов надпочечников и щитовидной железы, увеличивающих катаболизм.

Специфическое динамическое действие пищи представляет собой повышение расхода энергии, связанное с превращением пищевых веществ в организме, главным образом после их всасывания из пищеваритель ного тракта. При потреблении смешанной пищи обмен повышается на 5-10 %; углеводная и жирная пища увеличивает его незначительно - примерно на 4 %. Пища, богатая белком, может повышать расход энергии на 30 %, эффект обычно длится 12- 18 ч. Это обусловлено тем, что метаболические преобразования в организме белков сложны и требуют больших затрат энергии по сравнению с таковыми жиров и углеводов. Возможно, поэтому углеводы и жиры при их избыточном приеме увеличивают массу тела, а белки таким действием не обладают.

Специфическое динамическое действие пищи является одним из механизмов саморегуляции массы тела человека. Так, при избыточном приеме пищи, особенно богатой белком, развивается увеличение энергорасхода, ограничение приема пищи сопровождается снижением расхода энергии. Поэтому для коррекции массы тела людям с избыточной массой тела необходимо не только ограничение калорийности пищи, но и увеличение расхода энергии, например, с помощью мышечных нагрузок или охлаждающих процедур.

Рабочий обмен превышает основной обмен, главным образом за счет функций скелетных мышц. При их интенсивном сокращении расход энергии в мышце может возрасти в 100 раз, общий расход энергии при участии в такой реакции более 1/3 скелетных мышц за несколько секунд может повыситься в 50 раз.

Параметры энергетического обмена могут быть вычислены или прямо измерены.

Приход энергии определяютсжиганием навески пищевых веществ (физическая калориметрия) или расчетом содержания в пищевых продуктах белков, жиров, углево­дов.

Физическая калориметрия проводится при сжигании веществ в калориметре («калориметрической бомбе») Бертло. По нагреванию воды, находящейся между стенками калориметра, определяют количество тепла, выделенного при сжигании вещества. Согласно закону Гесса, суммарный тепловой эффект химической реакции зависит от исходных и конечных ее продуктов и не зависит от промежуточных этапов реакции.

Поэтому количество тепла, выделяемого при сжигании вещества вне организма и при его биологическом окислении, должно быть одинаковым.

Определение прихода энергии по калорийности принимаемых пищевых веществ. Теплота окисления 1 г вещества в организме, или калорический коэффициент питательных веществ, для углеводов и жиров равна их физической калорийности. Для углеводов этот показатель равен 4,1 ккал, или 17,17 кДж, для жиров - 9,3 ккал, или 38,94 кДж. Часть химической энергии белков теряется вместе с конечными продуктами обмена (мочевиной, мочевой кислотой, креатинином), обладающими теплотворной способностью. Поэтому физическая калорийность 1 г белков (5,60- 5,92 ккал) больше физиологической, которая равна 4,1 ккал, или 17,17 кДж.

После определения с помощью таблиц содержания в принятой пище (в граммах) белков (Б), жиров (Ж) и углеводов (У) рассчитывают (в килокалориях) содержащуюся в них химическую энергию (Q): Q = 4,1 х Б + 9,3 х Ж + 4,1 х У. Полученный результат следует оценивать с поправкой на усвоение, в среднем составляющей 90 %.

Определение расхода энергии (интенсивность метаболизма). Существуют прямой и непрямой способы определения расхода энергии, которые рассматриваются как разновидности физиологической калориметрии.

Прямая калориметрия была впервые разработана А.Лавуазье и в 1780 г. применена для непрерывного измерения биокалориметром тепла, выделяемого животным организмом. Прибор представлял собой герметизированную и теплоизолированную камеру, в которую подавался кислород; углекислый газ и водяные пары постоянно поглощались. Тепло, выделяемое находящимся в камере животным, нагревало воду, циркулировавшую по трубкам. В зависимости от степени нагревания воды и ее массы проводилась оценка количества тепла, выделяемого организмом в единицу времени.

Непрямая калориметрия. Наиболее простой вариант основан на определении количества потребляемого организмом кислорода (неполный газовый анализ). В ряде случаев для оценки интенсивности метаболизма определяют объем выделяющегося углекислого газа и объем потребленного организмом кислорода (полный газовый анализ).

Зная количество потребленного кислорода и выделившегося углекислого газа, легко рассчитать расход энергии, поскольку показателем характера окисляемых в организме веществ является дыхательный коэффициент (ДК).

Дыхательный коэффициент - отношение объема выделенного СО 2 к объему потребленного кислорода (ДК == Vco 2 /Vo 2 ,). Величина ДК зависит от вида окисляемых веществ. При окислении глюкозы он равен 1,0, жиров - 0,7, белков - 0,81. Эти различия объясняются тем, что в молекулах белков и жиров кислорода содержится меньше и для их сгорания требуется больше кислорода. По этой же причине при повышении в пищевом рационе доли углеводов и их переходе в жиры ДК становится больше 1,0 и потребление кислорода снижается, поскольку часть кислорода глюкозы не используется для синтеза жиров. При обычном (смешанном) питании ДК приближается к 0,82. При голодании в связи со снижением метаболизма глюкозы увеличивается окисление жиров и белков и дыхательный коэффициент может снижаться до 0,7.

Количественное соотношение принимаемых с пищей белков, жиров и углеводов определяет, естественно, не только величину дыхательного коэффициента, но и калори-ческий эквивалент кислорода.

Калорический эквивалент кислорода - количество энергии, вырабатываемой организмом при потреблении 1 л кислорода.

Регуляция обмена веществ находится под контролем гормонов и нервных центров.

Одним из убедительных экспериментальных доказательств возможности участия ЦНС в регуляции обмена веществ и энергии послужил опыт К.Бернара (1849), получивший название «сахарного укола»: введение иглы в продолговатый мозг собаки на уровне дна IV желудочка приводило к повышению концентрации глюкозы в плазме крови. В 1925 г. Г.Гессом доказано участие в сложных двигательных и вегетативных реакциях организма «эрготропных» и «трофотропных» зон гипоталамуса, раздражение которых может приводить к значительному преобладанию соответственно катаболических или анаболических реакций обмена. В этом же отделе мозга позднее были найдены центры голода, жажды, а также пищевого и питьевого насыщения.

Лимбическая кора больших полушарий способствует вегетативному, в том числе и метаболическому обеспечению эмоциональных реакций. Новая кора может быть субстратом для выработки самых тонких, индивидуальных механизмов регуляции - условных рефлексов. Ученики И.П.Павлова наблюдали, в частности, повышение расхода энергии при действии лишь сигналов охлаждения, приема пищи или физической нагрузки.

Энергетический обмен присущ каждой живой клетке, сопровождая ее функциональный и структурный метаболизм. Единицей измерения энергообмена является 1 ккал (4,19 кДж). Коэффициент полезного действия определяется отношением внешней работы к выработанной энергии. Для изолированной мышцы он составляет около 35% . Мышечная работа целого организма редко дает КПД больше 25%.

Различают следующие уровни метаболической активности :

1. Уровень энергообмена, несовместимый с жизнью . По отношению к организму в целом он не превышает 15% максимального в данных условиях энергообмена. Однако надо помнить, что для организма в целом уровень обменных процессов имеет иное значение, чем для изолированных органов, ибо снижение активности работы сердца ведет к смерти организма даже когда обмен в самом сердце снижается на 50%.

2. Уровень подержания целостности . Он не может быть ниже 15% всей активности.

3. Уровень готовности к активному действию . Обычно составляет 50% энергообмена.

При снижении величины энергообмена ниже 50% происходит ухудшение и снижение функциональной активности организма.

Интенсивность энергообмена зависит от характера деятельности. В зависимости от этого выделяют понятия основной обмен и рабочий обмен . Однако, прежде чем нам рассматривать эти понятия, обратимся к методам исследования энергетических затрат организма.

Их два - прямая калориметрия и непрямая калориметрия . Куда и в каком виде тратится энергия в организме? Понятно, что прежде всего на мышечную работу, затем - на проведение электрических импульсов, на работу химических насосов, на синтез продуктов, на работу сердца и внутренних органов. В этом плане в организме встречается и механическая, и электрическая и разные виды химической энергии.

Для изучения энергетических затрат методом прямой калориметрии надо любыми возможными способами непосредственно измерить эту энергию, которую организм, в соответствии с законом сохранения энергии, преобразует тепло и выделяет о внешнюю следу. Такое исследование возможно в специальных камерах, разработанных русским ученым Шатерниковым. В них создаются все условия для жизнеобеспечения человека или животного в течение суток и для измерения всего тепла, выделенного организмом за это время. Это длительная и дорогостоящая процедура, поэтом она в клинике н используется, хотя применяется в некоторых научных лабораториях.

Остаются косвенные методы измерения энергозатрат. Известно, что в результате окисления 1 г белков и углеводов освобождается 4,1 ккал тепла, а при окислении 1г жиров - 9,3 ккал. Зная количество принятых за определенный срок с пищей белков, жиров и углеводов, можно было бы рассчитать, сколько за это время поступило в организм энергии (а значить и выделилось, в соответствии с законом сохранения энергии). Этот метод учета общей величины энергозатрат организма называется методом пищевых рационов. Он не требует никакой аппаратуры, производится лишь учет количества съеденной пищи и по таблицам подчитывается ее калорийность.

Однако этот метод не совсем точен, ибо постоянно может быть отложение воспринятых веществ в депо, или, наоборот, присоединение к принятой пище ранее депонированных продуктов. Поэтому метод пищевых рационов применяется чаще всего лишь для контроля за общей калорийностью и энергетической ценностью пищи.

Более точным методом при определении энергетических затрат является метод исследования газообмена, который тоже относится к непрямой калориметрии. Из-за простоты, портативность аппаратуры и быстроты определения он имеет весьма широкое распространение. Основан метод газообмена на том, что между количеством освобожденного к организмом тепла, выделением углекислого газа и поглощением кислорода существуют точные соотношения.

Исследования теплоты сжигания каждого рода пищевых веществ в калориметрической бомбе показывают. что определенному количеству поглощенного кислорода и выделенного углекислого газа соответствует и определенное количество калорий выделенного тепла. Зная состав исследуемого вещества, нетрудно рассчитать, сколько кислорода необходимо для его полного окисления до углекислого газа и воды. С учетом этих количеств для каждого вещества определяется калорический эквивалент кислорода (КЭК ), т.е. количество тепла, освобождающееся при полном окислении его в условиях поглощения 1л кислорода. КЭК для углеводов равен 5 ккал, для жиров - 4,7 ккал, для белков - около 4,85 ккал. Это значит, что при окислении углеводов при потреблении каждого литра кислорода выделятся 5 ккал тепла.

Знание величины КЭК позволяет точно устанавливать величину энергетических затрат путем определения количества кислорода, которое за данный промежуток времени потреблено организмом.

Однако, чтобы это было возможно, необходимо знать еще, какие вещества в данный момент времени окисляются в организме. Это возможно определить по т.н. дыхательному коэффициенту . Дело в том, что в зависимости от химического состава окисляющегося вещества соотношение выделенного углекислого газа и потребленного кислорода различно. Это отношение и носит название дыхательного коэффициента (ДК). При окислении углеводов он равен 1, так как: C6H12O6 +6O2 =6CO2 +6H2O

Для жиров ДК равен 0,7, для белков 0,85. Поэтому, зная величины выделенного и поглощенного газа, легко рассчитать ДК, а зная его - применить нужный КЭК.

Методика изучения газообмена в принципе состоит в определении состава вдыхаемого и выдыхаемого воздуха и их объемов, и вычислении указанных коэффициентов.

Однако, поскольку люди питаются в основном смешанной пищей, то путем многих статистических исследований показано, что в среднем при общепринятом европейском рационе ДК равен 0,9 без особо больших колебаний. Если принять ДК за 0,9, тогда не надо определять количество поглощенного углекислого газа, достаточно знать величину поглощенного кислорода. Это делается легко с помощью метода Крога в приборах метаболиметрах или спирометрах. С конкретной методикой Вы познакомитесь на занятиях.

В 60-х годах прошлого столетия Биддером и Шмидтом было установлено, что расход энергии в покое отличается значительным постоянством. Оказалось, что у человека и животных наиболее низкие величины расхода энергии наблюдаются при исключении мышечной деятельности и приема пищи, и при температуре среды, соответствующей минимальной активности механизмов терморегуляции. Этот уровень получил название основного обмена.

Для определения основного обмена (ОО ) обычно производят исследование газообмена в утренние часы, через 14 часов после последнего приема пищи при температуре помещения 20-22оС. Исследуемый должен лежать совершенно спокойно, в удобной для него позе. Лучше всего исследование производить в постели, сразу после пробуждения. Исследование продолжается 10-15 минут.

У лиц одинакового роста, веса, пола и возраста основной обмен примерно одинаков и колеблется не более чем +-15%. Зная вес тела, рост и возраст, можно с помощью специальных формул и таблиц определить интенсивность должного основного обмена (ДОО) у людей. Истинные величины ОО не должны отличаться от ДОО более чем на 15%. Изменения ОО наблюдаются чаще всего при гормональных нарушениях (щитовидной и др. желез) и ряде других заболеваний.

Если пересчитать интенсивность ОО на 1 кг веса тела, то она весьма различна у животных разных видов и людей разного веса, роста и возраста. При этом у детей она выше, чем у взрослых. Если же произвести перерасчет интенсивности ОО на 1 м2 поверхности тела, то полученные результаты у разных животных и людей будут отличаться значительно меньше. Это дало в свое время повод Рубнеру сформулировать т.н. "правило поверхности ", согласно которому затраты энергии теплокровных животных пропорциональны поверхности тела.

Однако это не абсолютно верно. Интенсивность обмена веществ может значительно различаться у двух индивидуумов с одинаковой поверхностью тела, так как уровень окислительных процессов определяется не столько теплоотдачей с поверхности тела, сколько теплопродукцией клеток, зависящей от вида животного и состояния организма, которое, в свою очередь, обусловлено деятельностью его нервной системы и эндокринного аппарата. В связи с этим большее значение имеет т.н. "правило скелетных мышц " Аршавского, которое утверждает зависимость ОО от объема мышечной массы тела.

Определенные изменения расхода энергии отмечаются с возрастом. Самый высокий уровень обмена - у новорожденных и детей до года, затем эти величины снижаются. К 10-12 годам уровень обмена достигает показателей взрослого человека, однако до полового созревания у девочек он больше, чем у мальчиков.

Куда идет энергия в условиях основного обмена? В организме, находящемся в состоянии полного покоя, никогда не прекращается работа сердца, дыхательных мышц, деятельность почек, печени. Некоторое напряжение скелетных мышц (тонус) сохраняется и при полном расслаблении мускулатуры во время лежания и во сне. Считают, что из всего обмена веществ приблизительно 4-6% приходится на сердечную мышцу, 4-6% - на почки, 20-30% - на печень и органы пищеварения, 2-5% - на нервную систему и 40-50% - на скелетную мускулатуру.

Уровень обмена веществ неразрывно связан с процессами питания. На обмен веществ оказывают влияние как отдельные примы пищи, так и общее количество принятой с пищей веществ, а также их качественный состав. Всякий прием пищи вызывает повышение обмена веществ в организме, находящемся в условиях мышечного покоя. Это повышение обмена называется специфически динамическим действием пищи (СДП).

Наибольшее СДП оказывает прием белков. Повышение обмена может достигать при этом 30-40% общей энергетической ценности введенного в организм белка. Для углеводов СДП составляет 4-6%, для жиров - еще меньше. При питании смешанной пищей СДП составляет 10-12% ОО.

Причина СДП двоякая. 60% ее величины приходится на условно-рефлекторный компонент (доказывается опытом мнимого кормления). 40% приходится на работу пищеварительного аппарата. У новорожденных детей еще до первого кормления сосание соски-пустышки вызывает увеличение обмена. Очевидно, влияние акта еды на уровень обмена является безусловным рефлексом, биологическое значение которого заключается в том, что организм получает энергию для деятельности (возможно, из депо) задолго до того, когда принятые с пищей вещества реально поступят в метаболический котел. Если бы такого механизма не существовало, выбившийся из сил голодный человек смог бы активно передвигаться только через 3-4 часа после кормления. В реальной жизни он может это делать сразу после еды.

При мышечной деятельности обмен веществ в мускулатуре и в организме в целом сильно возрастает. Так, по сравнению с уровнем обмена лежа сидение вызывает повышение обмена на 12%, стояние - на 20%, ходьба - на 80-100%, бег - на 300-400%. Весьма интенсивная работа может повысить обмен веществ в 10 раз.

По степени энергетических затрат можно распределить представителей разных профессий на 4 группы. Суточный расход энергии этих групп такой:

1 группа - работники умственного труда (ученые, врачи, инженеры, студенты и т.п.) - 3000 ккал/сут.;

2 группа - работники механизированных производств (токари, водители, текстильщики и т.п.) - 3500 ккал/сут.;

3 группа - рабочие, занятые физическим трудом (слесари, истопники, с/х рабочие и т.п.) - 4000 ккал/сут.;

4 группа - рабочие тяжелого физического труда (грузчики, землекопы и т.п.) - 4500 ккал/сут. и более.

При умственном труде энергетические затраты значительно ниже, чем при физическом. Однако в гипнозе может быть большое повышение.

Принципы составления пищевых рационов . В зависимости от энергетических затрат стоит задача составления правильных пищевых рационов. Количество принятых с пищей калорий должно соответствовать энергетическим тратам организма.

Необходимые количества энергии могут быть получены организмом за счет окисления и белков, и жиров, и углеводов. Однако, кроме энергетических нужд организма надо учитывать и пластические нужды, надо помнить и о суточной потребности каждого их питательных веществ.

Особенно важен вопрос о нормах белка в питании человека. Некоторые западные исследователи считают, что количество белка в пище должно быть таково, чтобы не нарушалось азотистое равновесие. Наши ученые считают, что всегда должен быть какой-то белковый резерв в организме, поэтому при составлении рациона надо ориентироваться не на белковый максимум, а на белковый оптимум, т.е. на то количество белка, которое полностью обеспечивает потребности организма, хорошее самочувствие, высокую работоспособность, достаточную сопротивляемость инфекциям, а для детей и потребности роста. Ежесуточный прием с пищей взрослым человеком в среднем 80-100 г. белка полностью удовлетворяют этим требованиям. Не менее 30% белка должно быть животного происхождения.

Для детей суточная норма белка на 1 кг веса должна быть повышена. Для 1-3 лет она составляет 55 г, 4-6 лет - 72 г., 7-9 лет - 89 г, 10-15 лет 100-106 г.

Пищевой рацион должен включать не менее 60 г. жиров и 400-500 г. углеводов. У взрослых при трехразовом питании 30% рациона должно приходиться на завтрак, 40% на обед и 25% на ужин. Необходимо помнить также и о минеральном составе, витаминах. заменимых и незаменимых аминокислотах и др.

Таким образом, при составлении пищевого рациона необходимо руководствоваться следующими принципами:

1. Соответствие энергетическим затратам.

2. Удовлетворение нормы белков, жиров и углеводов в питании.

3. Учет усвояемости пищевых веществ.

4. Минеральный и витаминный состав.

5. Учет состояния организма и способов приготовления пищи (диетология).

6. Правильное распределение рациона по часам суток.

7. Разнообразие пищи и ее органолептика.

8. Учет потребностей роста.






Клеточная регуляция Клеточная регуляция базируется на особенностях взаимодействия фермента и субстрата. Фермент как биологический катализатор изменяет скорость реакции, соединяясь с субстратом и образовывая комплекс фермент - субстрат. После того, как произошли изменения в субстрате, фермент выходит из этого комплекса неповрежденным и начинает новый цикл. базируется на особенностях взаимодействия фермента и субстрата. Фермент как биологический катализатор изменяет скорость реакции, соединяясь с субстратом и образовывая комплекс фермент - субстрат. После того, как произошли изменения в субстрате, фермент выходит из этого комплекса неповрежденным и начинает новый цикл.


Гуморальная регуляция Гуморальная регуляция Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав. Некоторые гормоны непосредственно регулируют синтез или распад ферментов и проницаемость клеточных оболочек, изменяя в клетке содержание субстратов, кофакторов и ионный состав.


Нервная регуляция осуществляется Нервная регуляция осуществляется осуществляется различными путями: - изменением интенсивности функционирования эндокринных желез осуществляется различными путями: - изменением интенсивности функционирования эндокринных желез непосредственной активацией ферментов. Центральная нервная система, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток непосредственной активацией ферментов. Центральная нервная система, действуя на клеточные и гуморальные механизмы регуляции, адекватно изменяет трофику клеток


Превращение белков в организме Белки пищи Пищеварительный тракт Аминокислоты крови Клетки разных тканей Печень Переаминирование Дезаминирование аминокислот Аминокислоты печени АмиакКетокислоты МочевинаОкисление Синтез глицерина Синтез жирных кислот Остаточный азот крови ПочкиАзот мочи Ферментов печени Белков печени Белки плазмы крови




Регуляция белкового обмена Центральные механизмы регуляции Гипоталамус Гипофиз Поджелудочная железа Надпочечники Парасимпатические влияния Симпатические влияния Соматотропный гормон Глюкокортикоиды В печени Мышци, лимфоидная ткань Анаболизм Катаболизм Тиреоидныегормоны Инсулин Щитовидная железа


При условии, что все энергетические расходы возобновляются за счет углеводов и жиров, то есть при безбелковой диете, за сутки разрушается приблизительно 331 мг белка на 1 кг массы тела. Для человека массой 70 кг это составляет 23,2 г. Эту величину М. Рубнер назвал «коэффициентом изнашивания». При условии, что все энергетические расходы возобновляются за счет углеводов и жиров, то есть при безбелковой диете, за сутки разрушается приблизительно 331 мг белка на 1 кг массы тела. Для человека массой 70 кг это составляет 23,2 г. Эту величину М. Рубнер назвал «коэффициентом изнашивания».


АЗОТИСТЫЙ БАЛАНС АЗОТИСТЫЙ БАЛАНС Белковый коэффициент - это то количество белка, при расщеплении которого образуется 1 грамм азота. Он равен 6,25 г. Белковый коэффициент - это то количество белка, при расщеплении которого образуется 1 грамм азота. Он равен 6,25 г. Позитивный азотистый баланс - когда белков поступает больше чем выводится. Позитивный азотистый баланс - когда белков поступает больше чем выводится. Негативный азотистый баланс - когда белков поступает меньше чем выводится. Негативный азотистый баланс - когда белков поступает меньше чем выводится. Азотистое равновесие - когда азота с белками поступает столько же, сколько и выводится. Азотистое равновесие - когда азота с белками поступает столько же, сколько и выводится.








СТАНДАРТНЫЕ УСЛОВИЯ ДЛЯ ОПРЕДЕЛЕНИЯ ОСНОВНОГО ОБМЕНА: Утром, натощак. Утром, натощак. При температуре градусов по Цельсию. При температуре градусов по Цельсию. В состоянии полного физического и психического покоя, лежа на спине. В состоянии полного физического и психического покоя, лежа на спине.


Методы определения основного обмена Метод прямой калориметрии с полным газовым анализом. Метод прямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с полным газовым анализом. Метод непрямой калориметрии с неполным газовым анализом. Метод непрямой калориметрии с неполным газовым анализом. Значение воды для организма Участие в обменных процессах (реакции гидролиза, окисления и т.д.); Участие в обменных процессах (реакции гидролиза, окисления и т.д.); Способствует выведению конечных продуктов обмена; Способствует выведению конечных продуктов обмена; Обеспечивает поддержку температурного гомеостаза; Обеспечивает поддержку температурного гомеостаза; Механическая роль (уменьшает трение между внутренними органами, суставными поверхностями и т.д.); Механическая роль (уменьшает трение между внутренними органами, суставными поверхностями и т.д.); Универсальный растворитель. Универсальный растворитель.

Обмен веществ в организме. Пластическая rf энергетическая роль

питательных веществ

Постоянный обмен веществ и энергии между организмом и окружающей средой является необходимым условием его существования и отражает их

единство. Сущность этого обмена заключается в том, что поступающие в организм питательные вещества, после пищеварительных превращений, используются как пластический материал. Энергия, образующаяся при этом восполняет энергозатраты организма. Синтез сложных специфичных для организма веществ из простых соединений, всасывающихся в кровь, называется ассимиляцией или анаболизмом. Распад веществ организма до конечных продуктов, сопровождающийся выделением энергии называется диссимиляцией или катаболизмом. Эти процессы неразрывно связаны. Ассимиляция обеспечивает аккумуляцию энергии, а энергия выделяющаяся при диссимиляции необходима для синтеза веществ. Анаболизм и катаболизм объединены в единый процесс с помощью АТФ и НАДФ. Посредством их энергия, образующаяся в результате диссимиляции, передается для процессов ассимиляции.

Белки в основном являются пластическим материалом. Они входят в состав клеточных мембран, органелл. Белковые молекулы постоянно обновляются. Но это обновление происходит не только за счет белков пищи, но и посредством реутилизации собственных белков. Однако из 20 аминокислот, образующих белки, 10 являются незаменимыми. Т.е. они не могут образовываться -в организме. Конечными продуктами распада белков являются такие азотсодержащие соединения, как мочевина, мочевая кислота, креатинин. Поэтому состояние белкового обмена можно отгенить по азотистому балансу. Это соотношение количества азота поступающего с белками пищи и выделенного из организма с азотсодержащими продуктами обмена. В 100 г белке содержится около 16 г азота. Следовательно выделение 1 г азота свидетельствует о распаде в организме 6,25 г белка. Если количество выделяемого азота равно количеству поглощенного организмом имеет место азотистое равновесие. Если поступившего азота больше, чем выделенного, это называется положительным азотистым балансом. В организме происходит задержка или ретенция азота. Положительный азотистый баланс наблюдается при росте организма, при выздоровлении после тяжелых заболевания и после длительного голодания. Когда количество азота, выделенного организмом больше, чем поступившего, имеет место отрицательный азотистый баланс. Его возникновение объясняется преимущественным распадом собственных белков организма. Он возникает при голодании, отсутствии в пище незаменимых аминокислот, нарушениях переваривания и всасывания белка, тяжелых заболеваниях. Количество белка, которое полностью обеспечивает потребности организма называется белковым оптимумом. Минимальное, обеспечивающее лишь сохранение азотистого баланса - белковым минимумом. ВОЗ рекомендует потребление белка не менее 0,75 г на кг веса в сутки. Энергетическая роль белков относительно небольшая.


Жирами организма являются триглицериды, фосфолипиды. и стерины. Основная их роль энергетическая. При окислении липидов выделяется наибольшее количество энергии, поэтому около половины энергозатрат организма обеспечивается липидами. Они также являются.аккумулятором энергии в организме, потому что откладываются в жировых депо и -используются по мере необходимости. Жир депо составляют около 15% веса тела. Жиры имеют определенную пластическую роль, так как фосфолипиды, холестерин, жирные кислоты входят в состав клеточных мембран и-органелл. Кроме того, они покрывают внутренние органы. Например околопочечный жир способствует фиксации почек и предохранению их от механических воздействий. Липиды являются и источниками эндогенной воды. При окислении 100 г жира образуется около 100 г воды. Особую функцию выполняет бурый жир, располагающийся вдоль крупных сосудов и между лопаток. Содержащийся в его жировых клетках полипептид, при охлаждении организма, тормозит ресинтез АТФ за счет липидов. В результате резко усиливается теплопродукция. Большое значение имеют незаменимые жирные кислоты - линолевая, линоленовая и арахидоновая. Без них невозможен синтез фосфолипидов клеток, образование простагландинов и т.д. При их отсутствии задерживается рост и развитие организма.

Углеводы в основном играют энергетическую роль, так как служат основным источником энергии для клеток. Например, энергетические потребности нейронов покрываются исключительно глюкозой. Они аккумулируются в виде гликогена в печени и мышцах. Углеводы имеют определенное пластическое значение, так как глюкоза необходима для образования иуклеотидов и синтеза некоторых аминокислот.

Ч Методы измерения энергетический баланса организма

Соотношение между количеством энергии, поступившей с пищей, и энергии, выделенной во внешнюю среду называется энергетическим балансом организма Существует 2 метода определения выделяемой организмом энергии.

1 .Прямая калориметрия. Ее принцип основан на том, что все виды энергии в конечном итоге переходят в тепловую. Поэтому при прямой калориметрии определяют количество тепла, выделяемого организмом в окружающую среду за единицу времени. Для этого используют специальные камеры с хорошей теплоизоляцией и системой тегшоообменных труб, по которым циркулирует и нагревается вода.

2.Непрямая калориметрия. Она заключается в определении соотношения выделенного углекислого газа и поглощенного кислорода за единицу времени. Это полный газовый анализ.. Данное соотношение называется дыхательным коэффициентом (ДК).