Как найти ось симметрии фигуры. Сколько осей симметрии имеет треугольник

Осью симметрии называется прямая линия, при повороте вокруг которой на некоторый определённый угол фигура совмещается сама с собой .

Наименьший угол поворота, приводящий фигуру к самосовмещению, называется элементарным углом поворота оси . Элементарный угол поворота оси  содержится целое число раз в 360 :

где n – целое число.

Число n, показывающее сколько раз элементарный угол поворота оси содержится в 360 0 , называется порядком оси.

В геометрических фигурах могут присутствовать оси любых порядков, начиная от оси первого порядка и кончая осью бесконечного порядка.

Элементарный угол поворота оси первого порядка (n = 1) равен 360 0 . Так как каждая фигура, будучи повернута вокруг любого направления на 360 0 , совмещается сама с собой, то всякая фигура обладает бесконечным количеством осей первого порядка. Такие оси не являются характерными, поэтому они обычно не упоминаются.

Ось бесконечного порядка отвечает бесконечно малому элементарному углу поворота. Эта ось присутствует во всех фигурах вращения в качестве оси вращения.

Примерами осей третьего, четвертого, пятого, шестого и т. д. порядков являются перпендикуляры к плоскости рисунка, проходящие через центры правильных многоугольников, треугольников, квадратов, пятиугольников и т.п.

Таким образом, в геометрии существует бесконечный ряд осей различных порядков.

В кристаллических же многогранниках возможны не любые оси симметрии, а только оси первого, второго, третьего, четвертого и шестого порядка.

Оси симметрии пятого и выше шестого порядка в кристаллах невозможны. Это положение является одним из основных законов кристаллографии и называется законом симметрии кристаллов.

Как и др. геометрические законы кристаллографии, закон симметрии кристаллов объясняется решетчатым строением кристаллического вещества. Действительно, раз симметрия кристалла есть проявление симметрии его внутреннего строения, то в кристаллах возможны только такие элементы симметрии, которые не противоречат свойствам пространственной решетки.

Докажем, что ось пятого порядка не удовлетворяет законам пространственной решетки и тем самым докажем ее невозможность в кристаллических многогранниках.

Предположим, что ось пятого порядка в пространственной решетке возможна. Пусть эта ось будет перпендикулярна плоскости чертежа, пересекая ее в точке О (рис.2.9). В частном случае точка О может совпадать с одним из узлов решетки.

Рис. 2.9. Ось симметрии пятого порядка невозможна в пространственных решетках

Возьмем ближайший от оси узел решетки А 1 , лежащий в плоскости чертежа. Так как вокруг оси пятого порядка все повторяется пять раз, то ближайших к ней узлов в плоскости чертежа должно быть всего пять А 1 ,А 2 ,А 3 ,А 4 ,А 5 . Располагаясь на одинаковых расстояниях от точки О в вершинах правильного пятиугольника, они совмещаются друг с другом при повороте вокруг О на 360/5=72°.

Эти пять узлов, лежащие в одной плоскости, образуют плоскую сетку пространственной решетки и поэтому к ним приложимы все основные свойства решетки. Если узлы А 1 и А 2 принадлежат ряду плоской сетки с промежутком А 1 А 2 , то через любой узел решетки можно провести ряд, параллельный ряду А 1 А 2 . Проведем такой ряд через узел А 3 . Этот ряд, проходящий и через узел А 5 , должен иметь промежуток, равный А 1 А 2 , т. к. в пространственной решетке все параллельные ряды обладают одинаковой плотностью.

Следовательно, на расстоянии А 3 А x = А 1 А 2 от узла А 3 должен находиться еще один узел А x . Однако дополнительный узел А x оказывается лежащим ближе к точке О, чем узел А 1 , взятый по условию ближайшим к оси пятого порядка.

Таким образом, сделанное нами допущение о возможности оси пятого порядка в пространственных решетках привело нас к явному абсурду и поэтому является ошибочным.

Поскольку существование оси пятого порядка несовместимо с основными свойствами пространственной решетки, то такая ось невозможна и в кристаллах.

Аналогичным образом доказывается невозможность существования в кристаллах осей симметрии выше шестого порядка и, наоборот, возможность в кристаллах осей второго, третьего, четвертого и шестого порядка, присутствие которых не противоречит свойствам пространственных решеток.

Для обозначения осей симметрии употребляется буква L, а порядок оси указывается маленькой цифрой, располагаемой справа от буквы (например, L 4 - ось четвертого порядка).

В кристаллических многогранниках оси симметрии могут проходить через центры противоположных граней перпендикулярно к ним, через середины противоположных ребер перпендикулярно к ним (только L 2) и через вершины многогранника. В последнем случае симметричные грани и ребра одинаково наклонены к данной оси.

Кристалл может иметь несколько осей симметрии одного порядка, количества которых указывается коэффициентом перед буквой. Например, в прямоугольном параллелепипеде присутствует 3L 2 , т. е. три оси симметрии второго порядка; в кубе имеются 3L 4 , 4L 3 и 6L 2 , т. е. три оси симметрии четвертого порядка, четыре оси третьего порядка и шесть осей второго порядка и т. д.

Точки М и М1 называются симметричными относительно заданной прямой L , если эта прямая является серединным перпендикуляром к отрезку МM1 (рис 1). Каждая точка прямой L симметрична сама себе. Преобразование плоскости, при котором каждая точка отображается на симметричную ей точку относительно данной прямой L , называется осевой симметрией с осью L и обозначается SL : SL (M) = M1 .

Точки М и М1 взаимно симметричны относительно L , поэтому SL (M1 )=M . Следовательно, преобразование, обратное осевой симметрии, есть та же осевая симметрия: SL -1 = SL , SL ° SL = E . Иначе говоря, осевая симметрия плоскости является инволютивным преобразованием.

Образ данной точки при осевой симметрии можно просто построить, пользуясь только одним циркулем. Пусть L - ось симметрии, A и B - произвольные точки этой оси (рис 2). Если и SL (M) = M1 , то по свойству точек серединного перпендикуляра к отрезку имеем: AM = AM1 и BM = BM1 . Значит, точка M1 принадлежит двум окружностям: окружности с центром A радиуса AM и окружности с центром B радиуса BM (M - данная точка). Фигура F и её образ F1 при осевой симметрии называются симметричными фигурами относительно прямой L (рис 3).

Теорема. Осевая симметрия плоскости есть движение.

Если А и В - любые точки плоскости и SL (A) = A1 , SL (B) = B1 , то надо доказать, что A1 B1 = AB . Для этого введем прямоугольную систему координат OXY так, чтобы ось OX совпала с осью симметрии. Точки А и В имеют координаты А(x1 ,-y1 ) и B(x1 ,-y2 ) .Точки А1 и В1 имеют координаты A1 (x1 ,y1 ) и B1 (x1 ,y2 ) (рис 4 - 8). По формуле расстояния между двумя точками находим:

Из этих соотношений ясно, что АВ=А1 В1 , что и требовалось доказать.

Из сравнения ориентаций треугольника и его образа получаем, что осевая симметрия плоскости есть движение второго рода .

Осевая симметрия отображает каждую прямую на прямую. В частности, каждая из прямых, перпендикулярных оси симметрии, отображается этой симметрией на себя.


Теорема. Прямая, отличная от перпендикуляра к оси симметрии, и её образ при этой симметрии пересекаются на оси симметрии или ей параллельны.

Доказательство. Пусть дана прямая, не перпендикулярная оси L симметрии. Если m ? L= P и SL (m)=m1 , то m1 ?m и SL (P)=P , поэтому Pm1 (рис 9). Если же m || L , то m1 || L , так как в противном случае прямые m и m1 пересекались бы в точке прямой L , что противоречит условию m ||L (рис 10).


В силу определения равных фигур, прямые, симметричные относительно прямой L , образуют с прямой L равные углы (рис 9).

Прямая L называется осью симметрии фигуры F , если при симметрии с осью L фигура F отображается на себя: SL (F) =F . Говорят, что фигура F симметрична относительно прямой L .

Например, всякая прямая, содержащая центр окружности, является осью симметрии этой окружности. Действительно, пусть М - произвольная точка окружности щ с центром О , ОL , SL (M)= M1 . Тогда SL (O) = O и OM1 =OM , т. е. M1 є щ . Итак, образ любой точки окружности принадлежит этой окружности. Следовательно, SL (щ)=щ .

Осями симметрии пары непараллельных прямых служат две перпендикулярные прямые, содержащие биссектрисы углов между данными прямыми. Осью симметрии отрезка является содержащая его прямая, а также серединный перпендикуляр к этому отрезку.

Свойства осевой симметрии

  • 1. При осевой симметрии образом прямой является прямая, образом параллельных прямых являются параллельные прямые
  • 3. Осевая симметрия сохраняет простое отношение трех точек.
  • 3. При осевой симметрии отрезок переходит в отрезок, луч - в луч, полуплоскость - в полуплоскость.
  • 4. При осевой симметрии угол переходит в равный ему угол.
  • 5. При осевой симметрии с осью d всякая прямая, перпендикулярная оси d остается на месте.
  • 6. При осевой симметрии ортонормированный репер переходит в ортонормированный репер. При этом точка М с координатами х и у относительно репера R переходит в точку M` с теми же самыми координатами х и у, но относительно репера R`.
  • 7. Осевая симметрия плоскости переводит правый ортонормированный репер в левый и, наоборот, левый ортонормированный репер - в правый.
  • 8. Композиция двух осевых симметрий плоскости с параллельными осями есть параллельный перенос на вектор, перпендикулярный данным прямым, длина которого в два раза больше расстояния между данными прямыми

Вам понадобится

  • - свойства симметричных точек;
  • - свойства симметричных фигур;
  • - линейка;
  • - угольник;
  • - циркуль;
  • - карандаш;
  • - лист бумаги;
  • - компьютер с графическим редактором.

Инструкция

Проведите прямую a, которая будет являться осью симметрии. Если ее координаты не заданы, начертите ее произвольно. С одной стороны от этой прямой поставьте произвольную точку A. необходимо найти симметричную точку.

Полезный совет

Свойства симметрии постоянно используются в программе AutoCAD. Для этого используется опция Mirror. Для построения равнобедренного треугольника или равнобедренной трапеции достаточно начертить нижнее основание и угол между ним и боковой стороной. Отразите их с помощью указанной команды и продлите боковые стороны до необходимой величины. В случае с треугольником это будет точка их пересечения, а для трапеции - заданная величина.

С симметрией вы постоянно сталкиваетесь в графических редакторах, когда пользуетесь опцией «отразить по вертикали/горизонтали». В этом случае за ось симметрии берется прямая, соответствующая одной из вертикальных или горизонтальных сторон рамки рисунка.

Источники:

  • как начертить центральную симметрию

Построение сечения конуса не такая уж сложная задача. Главное - соблюдать строгую последовательность действий. Тогда данная задача будет легко выполнима и не потребует от Вас больших трудозатрат.

Вам понадобится

  • - бумага;
  • - ручка;
  • - циркль;
  • - линейка.

Инструкция

При ответе на этот вопрос, сначала следует определиться – какими параметрами задано сечение.
Пусть это будет прямая пересечения плоскости l с плоскостью и точка О, которая местом пересечения с его сечением.

Построение иллюстрирует рис.1. Первый шаг построения сечения – это через центр сечения его диаметра, продленного до l перпендикулярно этой линии. В итоге получается точка L. Далее через т.О проведите прямую LW, и постройте две направляющие конуса, лежащие в главном сечении О2М и О2С. В пересечении этих направляющих лежат точка Q, а также уже показанная точка W. Это первые две точки искомого сечения.

Теперь проведите в основании конуса ВВ1 перпендикулярный МС и постройте образующие перпендикулярного сечения О2В и О2В1. В этом сечении через т.О проведите прямую RG, параллельную ВВ1. Т.R и т.G - еще две точки искомого сечения. Если бы сечения бал известен, то его можно было бы построить уже на этой стадии. Однако это вовсе не эллипс, а нечто эллипсообразное, имеющее симметрию относительно отрезка QW. Поэтому следует строить как можно больше точек сечения, чтобы соединяя их в дальнейшем плавной кривой получить наиболее достоверный эскиз.

Постройте произвольную точку сечения. Для этого проведите в основании конуса произвольный диаметр AN и постройте соответствующие направляющие О2A и O2N. Через т.О проведите прямую, проходящую через PQ и WG, до ее пересечения с только что построенными направляющими в точках P и E. Это еще две точки искомого сечения. Продолжая так же и дальше, можно сколь угодно искомых точек.

Правда, процедуру их получения можно немного упростить пользуясь симметрией относительно QW. Для этого можно в плоскости искомого сечения провести прямые SS’, параллельные RG до пересечения их с поверхность конуса. Построение завершается скруглением построенной ломаной из хорд. Достаточно построить половину искомого сечения в силу уже упомянутой симметрии относительно QW.

Видео по теме

Совет 3: Как построить график тригонометрической функции

Вам требуется начертить график тригонометрической функции ? Освойте алгоритм действий на примере построения синусоиды. Для решения поставленной задачи используйте метод исследования.

Вам понадобится

  • - линейка;
  • - карандаш;
  • - знание основ тригонометрии.

Инструкция

Видео по теме

Обратите внимание

Если две полуоси однополосного гиперболоида равны, то фигуру можно получить путем вращения гиперболы с полуосями, одна из которых вышеуказанная, а другая, отличающаяся от двух равных, вокруг мнимой оси.

Полезный совет

При рассмотрении этой фигуры относительно осей Oxz и Oyz видно, что ее главными сечениями являются гиперболы. А при разрезе данной пространственной фигуры вращения плоскостью Oxy ее сечение представляет собой эллипс. Горловой эллипс однополосного гиперболоида проходит через начало координат, ведь z=0.

Горловой эллипс описывается уравнением x²/a² +y²/b²=1, а другие эллипсы составляются по уравнению x²/a² +y²/b²=1+h²/c².

Источники:

  • Эллипсоиды, параболоиды, гиперболоиды. Прямолинейные образующие

Форма пятиконечной звезды повсеместно используется человеком с древних времен. Мы считаем ее форму прекрасной, так как бессознательно различаем в ней соотношения золотого сечения, т.е. красота пятиконечной звезды обоснована математически. Первым описал построение пятиконечной звезды Евклид в своих "Началах". Давайте же приобщимся к его опыту.

Вам понадобится

  • линейка;
  • карандаш;
  • циркуль;
  • транспортир.

Инструкция

Построение звезды сводится к построению с последующим соединением его вершин друг с другом последовательно через одну. Для того чтобы построить правильный необходимо разбить окружность на пять .
Постройте произвольную окружность при помощи циркуля. Обозначьте ее центр точкой O.

Отметьте точку A и при помощи линейки начертите отрезок ОА. Теперь необходимо разделить отрезок OA пополам, для этого из точки А проведите дугу радиусом ОА до пересечения ее с окружностью в двух точках M и N. Постройте отрезок MN. Точка Е, в которой MN пересекает OA, будет делить отрезок OA пополам.

Восстановите перпендикуляр OD к радиусу ОА и соедините точку D и E. Сделайте засечку B на OA из точки E радиусом ED.

Теперь при помощи отрезка DB разметьте окружность на пять равных частей. Обозначьте вершины правильного пятиугольника последовательно цифрами от 1 до 5. Соедините точки в следующей последовательности: 1 с 3, 2 с 4, 3 с 5, 4 с 1, 5 с 2. Вот и правильная пятиконечная звезда, в правильный пятиугольник. Именно таким способом строил

    Сколько разных осей симметрии сможет иметь какой - нибудь треугольник, зависит от его геометрической формы. Если это равносторонний треугольник, тогда у него будут сразу целых три оси симметрии.

    А в случае если это равнобедренний треугольник, у него будет только одна ось симметрии.

    Сын сестры как раз проходит эту тему в школе на уроках геометрии. Ось симметрии - это прямая линия, при повороте вокруг которой на конкретный угол симметричная фигура займет такое же положение в пространстве, которое она занимала до поворота, а на место одних ее частей станут такие же другие. В равнобедренном треугольнике - три, в прямоугольном - одна, в остальных - нет, так как у них стороны не равны между собой.

    Это, смотря какой треугольник. У равностороннего треугольника имеются три оси симметрии, которые проходят через три его вершины. Равнобедренный треугольник, соответственно имеет одну ось симметрии. Остальные треугольники, оси симметрии не имеют.

    Самое простое, что можно запомнить - это у равностороннего треугольника три стороны равны и он имеет три оси симметрии

    От этого легче запомнить следующее

    Нет равных сторон, то есть все стороны разные,значит нет осей симметрии

    А в равнобедренном треугольнике всего одна ось

    Нельзя просто ответить, сколько осей симметрии у треугольника, не разобравшись с тем, о каком именно треугольнике идет речь.

    У треугольника равностороннего имеется три оси симметрии, соответственно.

    У треугольника равнобедренного имеется всего лишь одна ось симметрии.

    У любых других треугольников с разными по длине сторонами вообще нет ни одной оси симметрии.

    Треугольник, у которого все стороны разные по величине, не имеет осей симметрии.

    Прямоугольный треугольник может иметь одну ось симметрии в случае, если его катеты равны.

    В треугольнике, у которого две стороны равны (равнобедренном) можно провести одну ось, а у которого все три стороны равны (равностороннем) - три.

    Прежде, чем ответить на вопрос о том, сколько осей симметрии имеет треугольник, сначала нужно вообще вспомнить, что такое ось симметрии.

    Так вот, говоря просто, в геометрии ось симметрии - это линия, если по которой согнуть фигуру, то получим одинаковые половинки.

    но стоит помнить, что треугольники тоже бывают разными.

    Так вот, равнобедренный треугольник (треугольник с двумя равными сторонами) имеет одну ось симметрии.

    Равносторонний треугольник соответственно имеет 3 оси симметрии, так как все стороны у этого треугольника равны.

    А вот разносторонний треугольник вообще осей симметрии не имеет. Хоть как его складывай и хоть где прямые линии проводи, но раз стороны разные, то и двух одинаковых половиной не получится.

    Насколько помню геометрию, у равностороннего треугольника три оси симметрии, проходящие через его вершины, это его биссектрисы. У прямоугольного треугольника, как и разностороннего, тупоугольного и остроугольного треугольников осей симметрии вообще нет, а у равнобедренного она одна.

    А проверить это легко - просто представить линию, по которой его можно разрезать надвое так, чтобы получить два одинаковых треугольника.

    Так как треугольники бывают разные, то и оси симметрии у них соответственно в разных количествах. Например, треугольник с разными сторонами вообще без осей симметрии. А у равностороннего их аж три. Есть еще один вид треугольника, который имеет одну ось симметрии. У него две стороны равны, и один прямой угол.

    Произвольный треугольник не имеет осей симметрии. Равнобедренный треугольник имеет одну ось симметрии - это медиана к одиночной стороне. Равносторонний треугольник имеет три оси симметрии - это три его медианы.