«Графические методы решения уравнений и неравенств с параметрами.


Один из самых удобных методов решения квадратных неравенств – это графический метод. В этой статье мы разберем, как решаются квадратные неравенства графическим способом. Сначала обсудим, в чем суть этого способа. А дальше приведем алгоритм и рассмотрим примеры решения квадратных неравенств графическим способом.

Навигация по странице.

Суть графического способа

Вообще графический способ решения неравенств с одной переменной применяется не только для решения квадратных неравенств, но и неравенств других видов. Суть графического способа решения неравенств следующая: рассматривают функции y=f(x) и y=g(x) , которые соответствуют левой и правой частям неравенства, строят их графики в одной прямоугольной системе координат и выясняют, на каких промежутках график одной из них располагается ниже или выше другого. Те промежутки, на которых

  • график функции f выше графика функции g являются решениями неравенства f(x)>g(x) ;
  • график функции f не ниже графика функции g являются решениями неравенства f(x)≥g(x) ;
  • график функции f ниже графика функции g являются решениями неравенства f(x)
  • график функции f не выше графика функции g являются решениями неравенства f(x)≤g(x) .

Также скажем, что абсциссы точек пересечения графиков функций f и g являются решениями уравнения f(x)=g(x) .

Перенесем эти результаты на наш случай – для решения квадратного неравенства a·x 2 +b·x+c<0 (≤, >, ≥).

Вводим две функции: первая y=a·x 2 +b·x+c (при этом f(x)=a·x 2 +b·x+c) отвечает левой части квадратного неравенства, вторая y=0 (при этом g(x)=0 ) отвечает правой части неравенства. Графиком квадратичной функции f является парабола, а графиком постоянной функции g – прямая, совпадающая с осью абсцисс Ox .

Дальше согласно графическому способу решения неравенств надо проанализировать, на каких промежутках график одной функции расположен выше или ниже другого, что позволит записать искомое решение квадратного неравенства. В нашем случае нужно проанализировать положение параболы относительно оси Ox .

В зависимости от значений коэффициентов a , b и c возможны следующие шесть вариантов (для наших нужд достаточно схематического изображения, и можно не изображать ось Oy , так как ее положение не влияет на решения неравенства):

    На этом чертеже мы видим параболу, ветви которой направлены вверх, и которая пересекает ось Ox в двух точках, абсциссы которых есть x 1 и x 2 . Этот чертеж отвечает варианту, когда коэффициент a – положительный (он отвечает за направленность вверх ветвей параболы), и когда положительно значение дискриминанта квадратного трехчлена a·x 2 +b·x+c (при этом трехчлен имеет два корня, которые мы обозначили как x 1 и x 2 , причем приняли, что x 1 0 , D=b 2 −4·a·c=(−1) 2 −4·1·(−6)=25>0 , x 1 =−2 , x 2 =3 .

    Давайте для наглядности изобразим красным цветом части параболы, расположенные выше оси абсцисс, а синим цветом – расположенные ниже оси абсцисс.

    Теперь выясним, какие промежутки этим частям соответствуют. Определить их поможет следующий чертеж (в дальнейшем подобные выделения в форме прямоугольников будем проводить мысленно):

    Так на оси абсцисс оказались подсвечены красным цветом два промежутка (−∞, x 1) и (x 2 , +∞) , на них парабола выше оси Ox , они составляют решение квадратного неравенства a·x 2 +b·x+c>0 , а синим цветом подсвечен промежуток (x 1 , x 2) , на нем парабола ниже оси Ox , он представляет собой решение неравенства a·x 2 +b·x+c<0 . Решениями нестрогих квадратных неравенств a·x 2 +b·x+c≥0 и a·x 2 +b·x+c≤0 будут те же промежутки, но в них следует включить числа x 1 и x 2 , отвечающие равенству a·x 2 +b·x+c=0 .

    А теперь кратко: при a>0 и D=b 2 −4·a·c>0 (или D"=D/4>0 при четном коэффициенте b )

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 1)∪(x 2 , +∞) или в другой записи xx 2 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, x 1 ]∪ или в другой записи x 1 ≤x≤x 2 ,

    где x 1 и x 2 – корни квадратного трехчлена a·x 2 +b·x+c , причем x 1


    Здесь мы видим параболу, ветви которой направлены вверх, и которая касается оси абсцисс, то есть, имеет с ней одну общую точку, обозначим абсциссу этой точки как x 0 . Представленному случаю отвечает a>0 (ветви направлены вверх) и D=0 (квадратный трехчлен имеет один корень x 0 ). Для примера можно взять квадратичную функцию y=x 2 −4·x+4 , здесь a=1>0 , D=(−4) 2 −4·1·4=0 и x 0 =2 .

    По чертежу отчетливо видно, что парабола расположена выше оси Ox всюду, кроме точки касания, то есть, на промежутках (−∞, x 0) , (x 0 , ∞) . Для наглядности выделим на чертеже области по аналогии с предыдущим пунктом.

    Делаем выводы: при a>0 и D=0

    • решением квадратного неравенства a·x 2 +b·x+c>0 является (−∞, x 0)∪(x 0 , +∞) или в другой записи x≠x 0 ;
    • решением квадратного неравенства a·x 2 +b·x+c≥0 является (−∞, +∞) или в другой записи x∈R ;
    • квадратное неравенство a·x 2 +b·x+c<0 не имеет решений (нет интервалов, на которых парабола расположена ниже оси Ox );
    • квадратное неравенство a·x 2 +b·x+c≤0 имеет единственное решение x=x 0 (его дает точка касания),

    где x 0 - корень квадратного трехчлена a·x 2 +b·x+c .


    В этом случае ветви параболы направлены вверх, и она не имеет общих точек с осью абсцисс. Здесь мы имеем условия a>0 (ветви направлены вверх) и D<0 (квадратный трехчлен не имеет действительных корней). Для примера можно построить график функции y=2·x 2 +1 , здесь a=2>0 , D=0 2 −4·2·1=−8<0 .

    Очевидно, парабола расположена выше оси Ox на всем ее протяжении (нет интервалов, на которых она ниже оси Ox , нет точки касания).

    Таким образом, при a>0 и D<0 решением квадратных неравенств a·x 2 +b·x+c>0 и a·x 2 +b·x+c≥0 является множество всех действительных чисел, а неравенства a·x 2 +b·x+c<0 и a·x 2 +b·x+c≤0 не имеют решений.

И остаются три варианта расположения параболы с направленными вниз, а не вверх, ветвями относительно оси Ox . В принципе их можно и не рассматривать, так как умножение обеих частей неравенства на −1 позволяет перейти к равносильному неравенству с положительным коэффициентом при x 2 . Но все же не помешает получить представление и об этих случаях. Рассуждения здесь аналогичные, поэтому запишем лишь главные результаты.

Алгоритм решения

Итогом всех предыдущих выкладок выступает алгоритм решения квадратных неравенств графическим способом :

    На координатной плоскости выполняется схематический чертеж, на котором изображается ось Ox (ось Oy изображать не обязательно) и эскиз параболы, отвечающей квадратичной функции y=a·x 2 +b·x+c . Для построения эскиза параболы достаточно выяснить два момента:

    • Во-первых, по значению коэффициента a выясняется, куда направлены ее ветви (при a>0 – вверх, при a<0 – вниз).
    • А во-вторых, по значению дискриминанта квадратного трехчлена a·x 2 +b·x+c выясняется, пересекает ли парабола ось абсцисс в двух точках (при D>0 ), касается ее в одной точке (при D=0 ), или не имеет общих точек с осью Ox (при D<0 ). Для удобства на чертеже указываются координаты точек пересечения или координата точки касания (при наличии этих точек), а сами точки изображаются выколотыми при решении строгих неравенств, или обычными при решении нестрогих неравенств.
  • Когда чертеж готов, по нему на втором шаге алгоритма

    • при решении квадратного неравенства a·x 2 +b·x+c>0 определяются промежутки, на которых парабола располагается выше оси абсцисс;
    • при решении неравенства a·x 2 +b·x+c≥0 определяются промежутки, на которых парабола располагается выше оси абсцисс и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);
    • при решении неравенства a·x 2 +b·x+c<0 находятся промежутки, на которых парабола ниже оси Ox ;
    • наконец, при решении квадратного неравенства вида a·x 2 +b·x+c≤0 находятся промежутки, на которых парабола ниже оси Ox и к ним добавляются абсциссы точек пересечения (или абсцисса точки касания);

    они и составляют искомое решение квадратного неравенства, а если таких промежутков нет и нет точек касания, то исходное квадратное неравенство не имеет решений.

Остается лишь решить несколько квадратных неравенств с использованием этого алгоритма.

Примеры с решениями

Пример.

Решите неравенство .

Решение.

Нам требуется решить квадратное неравенство, воспользуемся алгоритмом из предыдущего пункта. На первом шаге нам нужно изобразить эскиз графика квадратичной функции . Коэффициент при x 2 равен 2 , он положителен, следовательно, ветви параболы направлены вверх. Выясним еще, имеет ли парабола с осью абсцисс общие точки, для этого вычислим дискриминант квадратного трехчлена . Имеем . Дискриминант оказался больше нуля, следовательно, трехчлен имеет два действительных корня: и , то есть, x 1 =−3 и x 2 =1/3 .

Отсюда понятно, что парабола пересекает ось Ox в двух точках с абсциссами −3 и 1/3 . Эти точки изобразим на чертеже обычными точками, так как решаем нестрогое неравенство. По выясненным данным получаем следующий чертеж (он подходит под первый шаблон из первого пункта статьи):

Переходим ко второму шагу алгоритма. Так как мы решаем нестрогое квадратное неравенство со знаком ≤, то нам нужно определить промежутки, на которых парабола расположена ниже оси абсцисс и добавить к ним абсциссы точек пересечения.

Из чертежа видно, что парабола ниже оси абсцисс на интервале (−3, 1/3) и к нему добавляем абсциссы точек пересечения, то есть, числа −3 и 1/3 . В результате приходим к числовому отрезку [−3, 1/3] . Это и есть искомое решение. Его можно записать в виде двойного неравенства −3≤x≤1/3 .

Ответ:

[−3, 1/3] или −3≤x≤1/3 .

Пример.

Найдите решение квадратного неравенства −x 2 +16·x−63<0 .

Решение.

По обыкновению начинаем с чертежа. Числовой коэффициент при квадрате переменной отрицательный, −1 , поэтому, ветви параболы направлены вниз. Вычислим дискриминант, а лучше – его четвертую часть: D"=8 2 −(−1)·(−63)=64−63=1 . Его значение положительно, вычислим корни квадратного трехчлена: и , x 1 =7 и x 2 =9 . Так парабола пересекает ось Ox в двух точках с абсциссами 7 и 9 (исходное неравенство строгое, поэтому эти точки будем изображать с пустым центром).Теперь можно сделать схематический рисунок:

Так как мы решаем строгое квадратное неравенство со знаком <, то нас интересуют промежутки, на которых парабола расположена ниже оси абсцисс:

По чертежу видно, что решениями исходного квадратного неравенства являются два промежутка (−∞, 7) , (9, +∞) .

Ответ:

(−∞, 7)∪(9, +∞) или в другой записи x<7 , x>9 .

При решении квадратных неравенств, когда дискриминант квадратного трехчлена в его левой части равен нулю, нужно быть внимательным с включением или исключением из ответа абсциссы точки касания. Это зависит от знака неравенства: если неравенство строгое, то она не является решением неравенства, а если нестрогое – то является.

Пример.

Имеет ли квадратное неравенство 10·x 2 −14·x+4,9≤0 хотя бы одно решение?

Решение.

Построим график функции y=10·x 2 −14·x+4,9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0,7 , так как D"=(−7) 2 −10·4,9=0 , откуда или 0,7 в виде десятичной дроби. Схематически это выглядит так:

Так как мы решаем квадратное неравенство со знаком ≤, то его решением будут промежутки, на которых парабола ниже оси Ox , а также абсцисса точки касания. Из чертежа видно, что нет ни одного промежутка, где бы парабола была ниже оси Ox , поэтому его решением будет лишь абсцисса точки касания, то есть, 0,7 .

Ответ:

данное неравенство имеет единственное решение 0,7 .

Пример.

Решите квадратное неравенство –x 2 +8·x−16<0 .

Решение.

Действуем по алгоритму решения квадратных неравенств и начинаем с построения графика. Ветви параболы направлены вниз, так как коэффициент при x 2 отрицательный, −1 . Найдем дискриминант квадратного трехчлена –x 2 +8·x−16 , имеем D’=4 2 −(−1)·(−16)=16−16=0 и дальше x 0 =−4/(−1) , x 0 =4 . Итак, парабола касается оси Ox в точке с абсциссой 4 . Выполним чертеж:

Смотрим на знак исходного неравенства, он есть <. Согласно алгоритму, решение неравенства в этом случае составляют все промежутки, на которых парабола расположена строго ниже оси абсцисс.

В нашем случае это открытые лучи (−∞, 4) , (4, +∞) . Отдельно заметим, что 4 - абсцисса точки касания - не является решением, так как в точке касания парабола не ниже оси Ox.

Ответ:

(−∞, 4)∪(4, +∞) или в другой записи x≠4 .

Обратите особое внимание на случаи, когда дискриминант квадратного трехчлена, находящегося в левой части квадратного неравенства, меньше нуля. Здесь не нужно спешить и говорить, что неравенство решений не имеет (мы же привыкли делать такой вывод для квадратных уравнений с отрицательным дискриминантом). Дело в том, что квадратное неравенство при D<0 может иметь решение, которым является множество всех действительных чисел.

Пример.

Найдите решение квадратного неравенства 3·x 2 +1>0 .

Решение.

Как обычно начинаем с чертежа. Коэффициент a равен 3 , он положителен, следовательно, ветви параболы направлены вверх. Вычисляем дискриминант: D=0 2 −4·3·1=−12 . Так как дискриминант отрицателен, то парабола не имеет с осью Ox общих точек. Полученных сведений достаточно для схематичного графика:

Мы решаем строгое квадратное неравенство со знаком >. Его решением будут все промежутки, на которых парабола находится выше оси Ox . В нашем случае парабола выше оси абсцисс на всем ее протяжении, поэтому искомым решением будет множество всех действительных чисел.

Ox , а также к ним нужно добавить абсциссы точек пересечения или абсциссу точки касания. Но по чертежу хорошо видно, что таких промежутков нет (так как парабола всюду ниже оси абсцисс), как нет и точек пересечения, как нет и точки касания. Следовательно, исходное квадратное неравенство не имеет решений.

Ответ:

нет решений или в другой записи ∅.

Список литературы.

  • Алгебра: учеб. для 8 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2008. - 271 с. : ил. - ISBN 978-5-09-019243-9.
  • Алгебра: 9 класс: учеб. для общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 16-е изд. - М. : Просвещение, 2009. - 271 с. : ил. - ISBN 978-5-09-021134-5.
  • Мордкович А. Г. Алгебра. 8 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 11-е изд., стер. - М.: Мнемозина, 2009. - 215 с.: ил. ISBN 978-5-346-01155-2.
  • Мордкович А. Г. Алгебра. 9 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович, П. В. Семенов. - 13-е изд., стер. - М.: Мнемозина, 2011. - 222 с.: ил. ISBN 978-5-346-01752-3.
  • Мордкович А. Г. Алгебра и начала математического анализа. 11 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений (профильный уровень) / А. Г. Мордкович, П. В. Семенов. - 2-е изд., стер. - М.: Мнемозина, 2008. - 287 с.: ил. ISBN 978-5-346-01027-2.

График линейного или квадратного неравенства строится так же, как строится график любой функции (уравнения). Разница заключается в том, что неравенство подразумевает наличие множества решений, поэтому график неравенства представляет собой не просто точку на числовой прямой или линию на координатной плоскости. С помощью математических операций и знака неравенства можно определить множество решений неравенства.

Шаги

Графическое изображение линейного неравенства на числовой прямой

  1. Решите неравенство. Для этого изолируйте переменную при помощи тех же алгебраических приемов, которыми пользуетесь при решении любого уравнения. Помните, что при умножении или делении неравенства на отрицательное число (или член), поменяйте знак неравенства на противоположный.

    • Например, дано неравенство 3 y + 9 > 12 {\displaystyle 3y+9>12} . Чтобы изолировать переменную, из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
      3 y + 9 > 12 {\displaystyle 3y+9>12}
      3 y + 9 − 9 > 12 − 9 {\displaystyle 3y+9-9>12-9}
      3 y > 3 {\displaystyle 3y>3}
      3 y 3 > 3 3 {\displaystyle {\frac {3y}{3}}>{\frac {3}{3}}}
      y > 1 {\displaystyle y>1}
    • Неравенство должно иметь только одну переменную. Если неравенство имеет две переменные, график лучше строить на координатной плоскости.
  2. Нарисуйте числовую прямую. На числовой прямой отметьте найденное значение (переменная может быть меньше, больше или равна этому значению). Числовую прямую рисуйте соответствующей длины (длинную или короткую).

    • Например, если вы вычислили, что y > 1 {\displaystyle y>1} , на числовой прямой отметьте значение 1.
  3. Нарисуйте кружок, обозначающий найденное значение. Если переменная меньше ( < {\displaystyle <} ) или больше ( > {\displaystyle >} ) этого значения, кружок не закрашивается, потому что множество решений не включает это значение. Если переменная меньше или равна ( ≤ {\displaystyle \leq } ) или больше или равна ( ≥ {\displaystyle \geq } ) этому значению, кружок закрашивается, потому что множество решений включает это значение.

    • y > 1 {\displaystyle y>1} , на числовой прямой нарисуйте незакрашенный кружок в точке 1, потому что 1 не входит в множество решений.
  4. На числовой прямой заштрихуйте область, определяющую множество решений. Если переменная больше найденного значения, заштрихуйте область справа от него, потому что множество решений включает все значения, которые больше найденного. Если переменная меньше найденного значения, заштрихуйте область слева от него, потому что множество решений включает все значения, которые меньше найденного.

    • Например, если дано неравенство y > 1 {\displaystyle y>1} , на числовой прямой заштрихуйте область справа от 1, потому что множество решений включает все значения больше 1.

    Графическое изображение линейного неравенства на координатной плоскости

    1. Решите неравенство (найдите значение y {\displaystyle y} ). Чтобы получить линейное уравнение, изолируйте переменную на левой стороне при помощи известных алгебраических методов. В правой части должна остаться переменная x {\displaystyle x} и, возможно, некоторая постоянная.

      • Например, дано неравенство 3 y + 9 > 9 x {\displaystyle 3y+9>9x} . Чтобы изолировать переменную y {\displaystyle y} , из обеих сторон неравенства вычтите 9, а затем обе стороны разделите на 3:
        3 y + 9 > 9 x {\displaystyle 3y+9>9x}
        3 y + 9 − 9 > 9 x − 9 {\displaystyle 3y+9-9>9x-9}
        3 y > 9 x − 9 {\displaystyle 3y>9x-9}
        3 y 3 > 9 x − 9 3 {\displaystyle {\frac {3y}{3}}>{\frac {9x-9}{3}}}
        y > 3 x − 3 {\displaystyle y>3x-3}
    2. На координатной плоскости постройте график линейного уравнения. постройте график , как строите график любого линейного уравнения. Нанесите точку пересечения с осью Y, а затем при помощи углового коэффициента нанесите другие точки.

      • y > 3 x − 3 {\displaystyle y>3x-3} постройте график уравнения y = 3 x − 3 {\displaystyle y=3x-3} . Точка пересечения с осью Y имеет координаты , а угловой коэффициент равен 3 (или 3 1 {\displaystyle {\frac {3}{1}}} ). Таким образом, сначала нанесите точку с координатами (0 , − 3) {\displaystyle (0,-3)} ; точка над точкой пересечения с осью Y имеет координаты (1 , 0) {\displaystyle (1,0)} ; точка под точкой пересечения с осью Y имеет координаты (− 1 , − 6) {\displaystyle (-1,-6)}
    3. Проведите прямую. Если неравенство строгое (включает знак < {\displaystyle <} или > {\displaystyle >} ), проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой. Если неравенство нестрогое (включает знак ≤ {\displaystyle \leq } или ≥ {\displaystyle \geq } ), проведите сплошную прямую, потому что множество решений включает значения, лежащие на прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} проведите пунктирную прямую, потому что множество решений не включает значения, лежащие на прямой.
    4. Заштрихуйте соответствующую область. Если неравенство имеет вид y > m x + b {\displaystyle y>mx+b} , заштрихуйте область над прямой. Если неравенство имеет вид y < m x + b {\displaystyle y, заштрихуйте область под прямой.

      • Например, в случае неравенства y > 3 x − 3 {\displaystyle y>3x-3} заштрихуйте область над прямой.

    Графическое изображение квадратного неравенства на координатной плоскости

    1. Определите, что данное неравенство является квадратным. Квадратное неравенство имеет вид a x 2 + b x + c {\displaystyle ax^{2}+bx+c} . Иногда неравенство не содержит переменную первого порядка ( x {\displaystyle x} ) и/или свободный член (постоянную), но обязательно включает переменную второго порядка ( x 2 {\displaystyle x^{2}} ). Переменные x {\displaystyle x} и y {\displaystyle y} должны быть изолированы на разных сторонах неравенства.

      • Например, нужно построить график неравенства y < x 2 − 10 x + 16 {\displaystyle y.
    2. На координатной плоскости постройте график. Для этого преобразуйте неравенство в уравнение и постройте график , как строите график любого квадратного уравнения. Помните, что график квадратного уравнения является параболой.

      • Например, в случае неравенства y < x 2 − 10 x + 16 {\displaystyle y постройте график квадратного уравнения y = x 2 − 10 x + 16 {\displaystyle y=x^{2}-10x+16} . Вершина параболы находится в точке (5 , − 9) {\displaystyle (5,-9)} , и парабола пересекает ось Х в точках (2 , 0) {\displaystyle (2,0)} и (8 , 0) {\displaystyle (8,0)} .

см. также Решение задачи линейного программирования графически , Каноническая форма задач линейного программирования

Система ограничений такой задачи состоит из неравенств от двух переменных:
и целевая функция имеет вид F = C 1 x + C 2 y , которую необходимо максимизировать.

Ответим на вопрос: какие пары чисел ( x ; y ) являются решениями системы неравенств, т. е. удовлетворяют каждому из неравенств одновременно? Другими словами, что значит решить систему графически?
Предварительно необходимо понять, что является решением одного линейного неравенства с двумя неизвестными.
Решить линейное неравенство с двумя неизвестными – это значит определить все пары значений неизвестных, при которых неравенство выполняется.
Например, неравенству 3x – 5 y ≥ 42 удовлетворяют пары (x , y ) : (100, 2); (3, –10) и т. д. Задача состоит в нахождении всех таких пар.
Рассмотрим два неравенства: ax + by c , ax + by c . Прямая ax + by = c делит плоскость на две полуплоскости так, что координаты точек одной из них удовлетворяют неравенству ax + by >c , а другой неравенству ax + +by <c .
Действительно, возьмем точку с координатой x = x 0 ; тогда точка, лежащая на прямой и имеющая абсциссу x 0 , имеет ординату

Пусть для определенности a < 0, b >0, c >0. Все точки с абсциссой x 0 , лежащие выше P (например, точка М ), имеют y M >y 0 , а все точки, лежащие ниже точки P , с абсциссой x 0 , имеют y N <y 0 . Поскольку x 0 –произвольная точка, то всегда с одной стороны от прямой будут находиться точки, для которых ax + by > c , образующие полуплоскость, а с другой стороны – точки, для которых ax + by < c .

Рисунок 1

Знак неравенства в полуплоскости зависит от чисел a , b , c .
Отсюда вытекает следующий способ графического решения систем линейных неравенств от двух переменных. Для решения системы необходимо:

  1. Для каждого неравенства выписать уравнение, соответствующее данному неравенству.
  2. Построить прямые, являющиеся графиками функций, задаваемых уравнениями.
  3. Для каждой прямой определить полуплоскость, которая задается неравенством. Для этого взять произвольную точку, не лежащую на прямой, подставить ее координаты в неравенство. если неравенство верное, то полуплоскость, содержащая выбранную точку, и является решением исходного неравенства. Если неравенство неверное, то полуплоскость по другую сторону прямой является множеством решений данного неравенства.
  4. Чтобы решить систему неравенств, необходимо найти область пересечения всех полуплоскостей, являющихся решением каждого неравенства системы.

Эта область может оказаться пустой, тогда система неравенств не имеет решений, несовместна. В противном случае говорят, что система совместна.
Решений может быть конечное число и бесконечное множество. Область может представлять собой замкнутый многоугольник или же быть неограниченной.

Рассмотрим три соответствующих примера.

Пример 1. Решить графически систему:
x + y – 1 ≤ 0;
–2 x – 2y + 5 ≤ 0.

  • рассмотрим уравнения x+y–1=0 и –2x–2y+5=0 , соответствующие неравенствам;
  • построим прямые, задающиеся этими уравнениями.

Рисунок 2

Определим полуплоскости, задаваемые неравенствами. Возьмем произвольную точку, пусть (0; 0). Рассмотрим x + y– 1 0, подставим точку (0; 0): 0 + 0 – 1 ≤ 0. значит, в той полуплоскости, где лежит точка (0; 0), x + y 1 ≤ 0, т.е. полуплоскость, лежащая ниже прямой, является решением первого неравенства. Подставив эту точку (0; 0), во второе, получим: –2 ∙ 0 – 2 ∙ 0 + 5 ≤ 0, т.е. в полуплоскости, где лежит точка (0; 0), –2x – 2y + 5≥ 0, а нас спрашивали, где –2x – 2y + 5 ≤ 0, следовательно, в другой полуплоскости – в той, что выше прямой.
Найдем пересечение этих двух полуплоскостей. Прямые параллельны, поэтому плоскости нигде не пересекаются, значит система данных неравенств решений не имеет, несовместна.

Пример 2. Найти графически решения системы неравенств:

Рисунок 3
1. Выпишем уравнения, соответствующие неравенствам, и построим прямые.
x + 2y – 2 = 0

x 2 0
y 0 1

y x – 1 = 0
x 0 2
y 1 3

y + 2 = 0;
y = –2.
2. Выбрав точку (0; 0), определим знаки неравенств в полуплоскостях:
0 + 2 ∙ 0 – 2 ≤ 0, т.е. x + 2y – 2 ≤ 0 в полуплоскости ниже прямой;
0 – 0 – 1 ≤ 0, т.е. y x – 1 ≤ 0 в полуплоскости ниже прямой;
0 + 2 =2 ≥ 0, т.е. y + 2 ≥ 0 в полуплоскости выше прямой.
3. Пересечением этих трех полуплоскостей будет являться область, являющаяся треугольником. Нетрудно найти вершины области, как точки пересечения соответствующих прямых


Таким образом, А (–3; –2), В (0; 1), С (6; –2).

Рассмотрим еще один пример, в котором получившаяся область решения системы не ограничена.

Министерство образования и молодежной политики Ставропольского края

Государственное бюджетное профессиональное образовательное учреждение

Георгиевский региональный колледж «Интеграл»

ИНДИВИДУАЛЬНЫЙ ПРОЕКТ

По дисциплине « Математика: алгебра, начала математического анализа, геометрия»

На тему: “Графическое решение уравнений и неравенств”

Выполнил студент группы ПК-61, обучающийся по специальности

«Программирование в компьютерных системах»

Целлер Тимур Витальевич

Руководитель: преподаватель Серкова Н.А.

Дата сдачи: « » 2017г.

Дата защиты: « » 2017г.

Георгиевск 2017г.

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

ЦЕЛЬ ПРОЕКТА:

Цель: Выяснить преимущества графического способа решения уравнений и неравенств.

Задачи:

    Сравнить аналитический и графический способ решения уравнений и неравенств.

    Ознакомиться в каких случаях графический способ имеет преимущества.

    Рассмотреть решение уравнений с модулем и параметром.

Актуальность исследования: Анализ материала, посвящённого графическому решению уравнений и неравенств в учебных пособиях «Алгебра и начала математического анализа» разных авторов, учёт целей изучения данной темы. Атак же обязательных результатов обучения, связанных с рассматриваемой темой.

Содержание

Введение

1. Уравнения с параметрами

1.1. Определения

1.2. Алгоритм решения

1.3. Примеры

2. Неравенства с параметрами

2.1. Определения

2.2. Алгоритм решения

2.3. Примеры

3. Применение графиков в решении уравнений

3.1. Графическое решение квадратного уравнения

3.2. Системы уравнений

3.3. Тригонометрические уравнения

4. Применение графиков в решении неравенств

5.Заключение

6. Список литературы

Введение

Изучение многих физических процессов и геометрических закономерностей часто приводит к решению задач с параметрами. Некоторые Вузы также включают в экзаменационные билеты уравнения, неравенства и их системы, которые часто бывают весьма сложными и требующими нестандартного подхода к решению. В школе же этот один из наиболее трудных разделов школьного курса математики рассматривается только на немногочисленных факультативных занятиях.

Готовя данную работу, я ставил цель более глубокого изучения этой темы, выявления наиболее рационального решения, быстро приводящего к ответу. На мой взгляд графический метод является удобным и быстрым способом решения уравнений и неравенств с параметрами.

В моём проекте рассмотрены часто встречающиеся типы уравнений, неравенств и их систем.

1. Уравнения с параметрами

    1. Основные определения

Рассмотрим уравнение

(a, b, c, …, k, x)=(a, b, c, …, k, x), (1)

где a, b, c, …, k, x -переменные величины.

Любая система значений переменных

а = а 0 , b = b 0 , c = c 0 , …, k = k 0 , x = x 0 ,

при которой и левая и правая части этого уравнения принимают действительные значения, называется системой допустимых значений переменных a, b, c, …, k, x. Пусть А – множество всех допустимых значений а, B – множество всех допустимых значений b, и т.д., Х – множество всех допустимых значений х, т.е. аА, bB, …, xX. Если у каждого из множеств A, B, C, …, K выбрать и зафиксировать соответственно по одному значению a, b, c, …, k и подставить их в уравнение (1), то получим уравнение относительно x, т.е. уравнение с одним неизвестным.

Переменные a, b, c, …, k, которые при решении уравнения считаются постоянными, называются параметрами, а само уравнение называется уравнением, содержащим параметры.

Параметры обозначаются первыми буквами латинского алфавита: a, b, c, d, …, k, l, m, n а неизвестные – буквами x, y,z.

Решить уравнение с параметрами – значит указать, при каких значениях параметров существуют решения и каковы они.

Два уравнения, содержащие одни и те же параметры, называются равносильными, если:

а) они имеют смысл при одних и тех же значениях параметров;

б) каждое решение первого уравнения является решением второго и наоборот.

    1. Алгоритм решения

    Находим область определения уравнения.

    Выражаем a как функцию от х.

    В системе координат хОа строим график функции а=(х) для тех значений х, которые входят в область определения данного уравнения.

Находим точки пересечения прямой а=с, где с(-;+) с графиком функции а=(х).Если прямая а=с пересекает график а=(х), то определяем абсциссы точек пересечения. Для этого достаточно решить уравнение а=(х) относительно х.

    Записываем ответ.

    1. Примеры

I. Решить уравнение

(1)

Решение.

Поскольку х=0 не является корнем уравнения, то можно разрешить уравнение относительно а:

или

График функции – две “склеенных” гиперболы. Количество решений исходного уравнения определяется количеством точек пересечения построенной линии и прямой у=а.

Если а  (-;-1](1;+) , то прямая у=а пересекает график уравнения (1) в одной точке. Абсциссу этой точки найдем при решении уравнения относительно х.

Таким образом, на этом промежутке уравнение (1) имеет решение.

Если а  , то прямая у=а пересекает график уравнения (1) в двух точках. Абсциссы этих точек можно найти из уравнений и, получаем

и.

Если а  , то прямая у=а не пересекает график уравнения (1), следовательно решений нет.

Ответ:

Если а  (-;-1](1;+), то;

Если а  , то, ;

Если а  , то решений нет.

II. Найти все значения параметра а, при которых уравнение имеет три различных корня.

Решение.

Переписав уравнение в виде и рассмотрев пару функций, можно заметить, что искомые значения параметра а и только они будут соответствовать тем положениям графика функции, при которых он имеет точно три точки пересечения с графиком функции.

В системе координат хОу построим график функции). Для этого можно представить её в виде и, рассмотрев четыре возникающих случая, запишем эту функцию в виде

Поскольку график функции – это прямая, имеющая угол наклона к оси Ох, равный, и пересекающая ось Оу в точке с координатами (0 , а), заключаем, что три указанные точки пересечения можно получить лишь в случае, когда эта прямая касается графика функции. Поэтому находим производную

Ответ: .

III. Найти все значения параметра а, при каждом из которых система уравнений

имеет решения.

Решение.

Из первого уравнения системы получим при Следовательно, это уравнение задаёт семейство “полупарабол” - правые ветви параболы “скользят” вершинами по оси абсцисс.

Выделим в левой части второго уравнения полные квадраты и разложим её на множители

Множеством точек плоскости, удовлетворяющих второму уравнению, являются две прямые

Выясним, при каких значениях параметра а кривая из семейства “полупарабол” имеет хотя бы одну общую точку с одной из полученных прямых.

Если вершины полупарабол находятся правее точки А, но левее точки В (точка В соответствует вершине той “полупараболы”, которая касается

прямой), то рассматриваемые графики не имеют общих точек. Если вершина “полупараболы” совпадает с точкой А, то.

Случай касания “полупараболы” с прямой определим из условия существования единственного решения системы

В этом случае уравнение

имеет один корень, откуда находим:

Следовательно, исходная система не имеет решений при, а при или имеет хотя бы одно решение.

Ответ: а  (-;-3] (;+).

IV. Решить уравнение

Решение.

Использовав равенство, заданное уравнение перепишем в виде

Это уравнение равносильно системе

Уравнение перепишем в виде

. (*)

Последнее уравнение проще всего решить, используя геометрические соображения. Построим графики функций и Из графика следует, что при графики не пересекаются и, следовательно, уравнение не имеет решений.

Если, то при графики функций совпадают и, следовательно, все значения являются решениями уравнения (*).

При графики пересекаются в одной точке, абсцисса которой. Таким образом, при уравнение (*) имеет единственное решение - .

Исследуем теперь, при каких значениях а найденные решения уравнения (*) будут удовлетворять условиям

Пусть, тогда. Система примет вид

Её решением будет промежуток х (1;5). Учитывая, что, можно заключить, что при исходному уравнению удовлетворяют все значения х из промежутка исходное неравенство равносильно верному числовому неравенству 2<4.Поэтому все значения переменной, принадлежащие этому отрезку, входят в множество решений.

На интеграле (1;+∞) опять получаем линейное неравенство 2х<4, справедливое при х<2. Поэтому интеграл (1;2) также входит в множество решений. Объединяя полученные результаты, делаем вывод: неравенству удовлетворяют все значения переменной из интеграла (-2;2) и только они.

Однако тот же самый результат можно получить из наглядных и в то же время строгих геометрических соображений. На рисунке 7 построены графики функций: y = f ( x )=| x -1|+| x +1| и y =4.

Рисунок 7.

На интеграле (-2;2) график функции y = f (x ) расположен под графиком функции у=4, а это означает, что неравенство f (x )<4 справедливо. Ответ:(-2;2)

II )Неравенства с параметрами.

Решение неравенств с одним или несколькими параметрами представляет собой, как правило, задачу более сложную по сравнению с задачей, в которой параметры отсутствуют.

Например, неравенство √а+х+√а-х>4, содержащее параметр а, естественно, требует, для своего решения гораздо больше усилий, чем неравенство √1+х + √1-х>1.

Что значит решить первое из этих неравенств? Это, по существу, означает решить не одно неравенство, а целый класс, целое множество неравенств, которые получаются, если придавать параметру а конкретные числовые значения. Второе же из выписанных неравенств является частным случаем первого, так как получается из него при значении а=1.

Таким образом, решить неравенство, содержащее параметры, это значит определить, при каких значениях параметров неравенство имеет решения и для всех таких значений параметров найти все решения.

Пример1:

Решить неравенство |х-а|+|х+а|< b , a <>0.

Для решения данного неравенства с двумя параметрами a u b воспользуемся геометрическими соображениями. На рисунке 8 и 9 построены графики функций.

Y = f (x )=| x - a |+| x + a | u y = b .

Очевидно, что при b <=2| a | прямая y = b проходит не выше горизонтального отрезка кривой y =| x - a |+| x + a | и, следовательно, неравенство в этом случае не имеет решений (рисунок 8). Если же b >2| a |, то прямая y = b пересекает график функции y = f (x ) в двух точках (- b /2; b ) u (b /2; b )(рисунок 6) и неравенство в этом случае справедливо при – b /2< x < b /2,так как при этих значениях переменной кривая y =| x + a |+| x - a | расположена под прямой y = b .

Ответ: Если b <=2| a | , то решений нет,

Если b >2| a |, то x €(- b /2; b /2).

III ) Тригонометрические неравенства:

При решении неравенств с тригонометрическими функциями существенно используется периодичность этих функций и их монотонность на соответствующих промежутках. Простейшие тригонометрические неравенства. Функция sin x имеет положительный период 2π. Поэтому неравенства вида: sin x>a, sin x>=a,

sin x

Достаточно решить сначала на каком-либо отрезке длины 2 π . Множество всех решений получим, прибавив к каждому из найденных на этом отрезке решений числа вида 2 π п, пЄ Z .

Пример 1: Решить неравенство sin x >-1/2.(рисунок 10)

Сначала решим это неравенство на отрезке[-π/2;3π/2]. Рассмотрим его левую часть – отрезок [-π/2;3π/2].Здесь уравнение sin x =-1/2 имеет одно решение х=-π/6; а функция sin x монотонно возрастает. Значит, если –π/2<= x <= -π/6, то sin x <= sin (- π /6)=-1/2, т.е. эти значения х решениями неравенства не являются. Если же –π/6<х<=π/2 то sin x > sin (-π/6) = –1/2. Все эти значения х не являются решениями неравенства.

На оставшемся отрезке [π/2;3π/2] функция sin x монотонно убывает и уравнение sin x = -1/2 имеет одно решение х=7π/6. Следовательно, если π/2<= x <7π/, то sin x > sin (7π/6)=-1/2, т.е. все эти значения х являются решениями неравенства. Для x Є имеем sin x <= sin (7π/6)=-1/2, эти значения х решениями не являются. Таким образом, множество всех решений данного неравенства на отрезке [-π/2;3π/2] есть интеграл (-π/6;7π/6).

В силу периодичности функции sin x с периодом 2π значения х из любого интеграла вида: (-π/6+2πn;7π/6 +2πn),nЄ Z , также являются решениями неравенства. Никакие другие значения х решениями этого неравенства не являются.

Ответ: -π/6+2π n < x <7π/6+2π n , где n Є Z .

Заключение

Мы рассмотрели графический метод решения уравнений и неравенств; рассмотрели конкретные примеры, при решении которых использовали такие свойства функций, как монотонность и четность. Анализ научной литературы, учебников математики позволил структурировать отобранный материал в соответствии с целями исследования, подобрать и разработать эффективные методы решения уравнений и неравенств. В работе представлен графический метод решения уравнений и неравенств и примеры, в которых используются данные методы. Результатом проекта можно считать творческие задания, как вспомогательный материал для развития навыка решения уравнений и неравенств графическим методом.

Список использованной литературы

    Далингер В. А. “Геометрия помогает алгебре”. Издательство “Школа - Пресс”. Москва 1996 г.

    Далингер В. А. “Все для обеспечения успеха на выпускных и вступительных экзаменах по математике”. Издательство Омского педуниверситета. Омск 1995 г.

    Окунев А. А. “Графическое решение уравнений с параметрами”. Издательство “Школа - Пресс”. Москва 1986 г.

    Письменский Д. Т. “Математика для старшеклассников”. Издательство “Айрис”. Москва 1996 г.

    Ястрибинецкий Г. А. “Уравнений и неравенства, содержащие параметры”. Издательство “Просвещение”. Москва 1972 г.

    Г. Корн и Т.Корн “Справочник по математике”. Издательство “Наука” физико–математическая литература. Москва 1977 г.

    Амелькин В. В. и Рабцевич В. Л. “Задачи с параметрами” . Издательство “Асар”. Минск 1996 г.

Интернет ресурсы