Фибринолиз процесс. Фибринолитическая система организма

В этой статье мы ознакомимся с ответом на вопрос о том, что это - фибринолиз. Здесь мы постараемся изучить определение данного термина, его значение в жизни живых существ, фазы процесса и некоторые особенности. Также в статье будет уделено отдельное внимание вопросу о его норме в организме, в частности при беременности женщин.

Введение

Фибринолиз - это процесс, в ходе которого осуществляется растворение тромбов и/или сгустков крови. Он является неотъемлемой частью устройства механизма гомеостаза и всегда сопровождается свертыванием жидкости - крови. В данный процесс входит множество культивирующих факторов, которые его сопровождают.

Фибринолиз - это одна из важнейших защитных реакций организма, предотвращающая закупоривание фибрином сосудов, служащих магистралью для движения крови. Еще одна важная функция - реканализация, которую можно наблюдать после того, как кровотечение было прекращено. В фибринолиз включено расщепление фибрина, которое осуществляется посредством использования плазмина. Белок плазмина пребывает в крови, однако в неактивной форме, которую называют плазминогеном.

Внешняя активация

Фазы фибринолиза делятся в соответствии с формой активации, которую разделяют на внешнюю и внутреннюю.

Внешний механизм активации возможен лишь в том случае, если имеется набор тканевых активаторов. Как правило, последние синтезируются в сосудистом эндотелии. К таким типам молекул относят следующие вещества:

  • Урокиназа - человеческая сериновая протеаза, кодируемая PLAU-геном (10-хромосома).
  • ТАП - тканевый активатор плазминогенов.

Внутренняя активация

Осуществление внутренней активации происходит посредством применения плазменных активаторов и форменных кровяных элементов, таки как лейкоциты, эритроциты и тромбоциты. Внутреннюю систему активационного механизма делят на Хагеман-зависимую и независимую форму. Последний тип (независимый) осуществляется лишь при наличии протеинов С и S, которые оказывают на него прямое воздействие. Зависимый фибринолиз обуславливается влиянием Также необходимо присутствие калликреина, вызывающего трансформацию плазминогенов в плазмин. Главное предназначение Хагеман-зависимой формы заключается в очищении русла сосудов от фибрина в нестабильном виде.

Процесс ингибирования

Фибринолиз - это процесс, который вместе с рядом некоторых ингибирующих и активирующих веществ, обуславливают явление фибринолитической активности и определяют ее свойства посредством соотношения между собой.

Плазма крови включает в себя набор ингибиторов, замедляющих процесс фибринолиза. Одним из самых значимых ингибиторов, является альфа2-плазмин, связывающий плазмин, трипсин, калликреин, урокиназу и ТАП. Другими сильными ингибирующими веществами служат: С1-протеазный ингибитор и много других. Их могут вырабатывать не только плазма крови, но и фибробласты, макрофаги и моноциты.

Форма регуляции

Процессы свертывания и фибринолиза пребывают в постоянном равновесии между собой.

Явление усиления фибринолиза обуславливается изменениями в симпатической нервной системе (повышение тонуса) и увеличенным выделением таких гормонов, как адреналин и норадреналин. Три данных причины приводят к активации фактора Хагемана. Последний в свою очередь запускает как внутренний, так и наружный механизмы. Главными эфферентными регуляторами процессов фибринолиза и кровяного свертывания являются сосудистые стенки.

Показатели при беременности

Норма фибринолиза при беременности является очень важным моментом, на который будущей матери стоит обратить внимание. Это позволит избежать ненужных осложнений, которые могут проявиться у плода в случае, если его норма превышена или понижена.

Фибринолиз - это явление растворения тромбов и кровяных сгустков. Он напрямую влияет на формирование человеческого ребенка в утробе матери. После зачатия показатель фибриногена, связанного с явлением фибринолиза, может менять свое значение в организме от крайне малых до огромных величин. Чтобы четко определить его уровень, необходимо сделать клиническое исследование.

Роды сопровождаются большой кровопотерей и в случае отсутствия достаточного количества фибриногена, это может привести к утрате больших ресурсов крови. Процесс фибринолиза крайне важен для активности плаценты, как и содержание самого фибриногена. Оба фактора могут вызывать крайне нежелательные осложнения, например задержку в развитии плода.

На основе данных об уровне фибриногена и скорости протекания фибринолиза, доктора могут сделать выводы о наличии у матери выраженных воспалительных процессов, а также некротической тканевой конфигурации. Природа решила данную проблему при помощи увеличения уровня фибриногена в течение периода вынашивания ребенка.

Норма фибриногена

Нормой для женщин до начала беременности является показатель от двух до четырех грамм на литр. После того как плод был зачат, данная цифра возрастает до шести грамм. Этот показатель по-прежнему считается нормой. Существенное превышение фибриногена наблюдается на третьем триместре.

Несмотря на то, что увеличение показателя фибриногена при беременности является нормальной реакцией организма на формирование плода, его величина (фибриногена) все равно обладает собственным пределом, наличие которого может свидетельствовать о формировании патологических процессов. В таких случаях назначается обследование пациенты с применением гемостазиограммы.

Фибринолиз - что это значит? Ответив на данный вопрос, мы также затронули понятие фибриногена. Так к каким же последствиям может привести понижение фибриногена и изменение в процессе фибринолиза?

Вышеупомянутые изменения в организме матери могут привести к досрочной отслойке плацентарных тканей, образующих ее стенки, а также вызвать гипоксию и гипотрофию плода.

Низкое значение фибриногена может вызвать такие болезненные состояния:

  • гепатиты;
  • острая нехватка витаминов В2 и С;
  • гестоз;
  • внутрисосудистое диссеминированное свертывание.

Как правило, нехватка компонента крови фибриногена обуславливается явлением позднего токсикоза - гестоза.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием. Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Различают два вида фибринолиза – ферментативный и неферментативный.

Ферментативный фибринолиз осуществляется при участии протеолитического фермента плазмина. Происходит расщепление фибрина до продуктов деградации.

Неферментативный фибринолиз осуществляется комплексными соединениями гепарина с тромбогенными белками, биогенными аминами, гормонами, совершаются конформационные изменения в молекуле фибрина-S.

Процесс фибринолиза идет по двум механизмам – внешнему и внутреннему.

По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена.

Во внутреннем пути активации принимают участие проактиваторы и активаторы фибринолиза, способные превращать проактиваторы в активаторы плазминогена или же действовать непосредственно на профермент и переводить его в плазмин.

Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации.

Процесс фибринолиза рассматривается в тесной связи с процессом свертывания крови. Их взаимосвязи осуществляются на уровне общих путей активаций в реакции ферментного каскада, а также за счет нервно-гуморальных механизмов регуляции.

Факторы ускоряющие и замедляющие свертывание крови.

Факторы, ускоряющие процесс свертывания крови:

Разрушение форменных элементов крови и клеток тканей (увеличивается выход факторов, участвующих в свертывании крови):

Ионы кальция (участвуют во всех основных фазах свертывания крови);

Тромбин;

Витамин К (участвует в синтезе протромбина);

Тепло (свертывание крови является ферментативным процессом);

Адреналин.

Факторы, замедляющие свертывание крови

Устранение механических повреждений форменных элементов крови (парафинирование канюль и емкостей для взятия донорской крови);

Цитрат натрия (осаждает ионы кальция);

Гепарин;

Гирудин;

Понижение температуры;

Плазмин.

Противосвертывающие механизмы. В нормальных условиях кровь в сосудах всегда находится в жидком состоянии, хотя условия для образования внутрисосудистых тромбов существуют постоянно. Поддержание жидкого состояния крови обеспечивается по принципу саморегуляции с формированием соответствующий функциональной системы. Главными аппаратами реакций этой функциональной системы являются свертывающая я противосвертывающая системы. В настоящее время принято выделять две Противосвертывающие системы - первую и вторую.

Первая противосвертывающая система (ППС) осуществляет нейтрализацию тромбина в циркулирующей крови при условии его медленного образования и в небольших количествах. Нейтрализация тромбина осуществляется теми антикоагулянтами, которые постоянно находятся в крови и поэтому ППС функционирует постоянно. К таким веществам относятся:

Фибрин, который адсорбирует часть тромбина;

Антитромбины (известно 4 вида антитромбинов), они препятствуют превращению протромбина в тромбин;

Гепарин - блокирует фазу перехода протромбина в тромбин и фибриногена в фибрин, а также тормозит первую фазу свертывания крови;

Продукты лизиса (разрушения фибрина), которые обладают антитромбиновой активностью, тормозят образование протромбиназы;

Клетки ретикуло-эндотелиальной системы поглощают тромбин плазмы крови.

При быстром лавинообразном нарастании количества тромбина в крови ППС не может предотвратить образование внутрисосудистых тромбов. В этом случае в действие вступает вторая противосвертывающая система (ВПС), которая обеспечивает поддержание жидкого состояния крови в сосудах рефлекторно-гуморальным путем по следующей схеме. Резкое повышение концентрации тромбина в циркулирующей крови приводит к раздражению сосудистых хеморецепторов. Импульсы от них поступают в гигантоклеточное ядро ретикулярной формации продолговатого мозга, а затем по эфферентным путям к ретикуло-эндотелиальной системе (печень, легкие и др.). В кровь выделяются в больших количествах гепарин и вещества, которые осуществляют и стимулируют фибринолиз (например, активаторы плазминогена).

Гепарин ингибирует первые три фазы свертывания крови, вступает в связь с веществами, которые принимают участие в свертывании крови. Образующиеся при этом комплексы с тромбином, фибриногеном, адреналином, серотонином, фактором XIII и др. обладают антикоагулянтной активностью и литическим действием на нестабилизированный фибрин.

Следовательно, поддержание крови в жидком состоянии осуществляется благодаря действию ППС и ВПС.

Регуляция свертывания крови. Регуляция свертывания крови осуществляется с помощью нейро-гуморальных механизмов. Возбуждение симпатического отдела вегетативной нервной системы, возникающее при страхе, боли, при стрессовых состояниях, приводит к значительному ускорению свертывания крови, что называется гиперкоагуляцией. Основная роль в этом механизме принадлежит адреналину и норадреналину. Адреналин запускает ряд плазменных и тканевых реакций.

Во-первых, высвобождение из сосудистой стенки тромбопластина, который быстро превращается в тканевую протромбиназу.

Во-вторых, адреналин активирует фактор XII, который является инициатором образования кровяной протромбиназы.

В-третьих, адреналин активирует тканевые липазы, которые расщепляют жиры и тем самым увеличивается содержание жирных кислот в крови, обладающих тромбопластической активностью.

В-четвертых, адреналин усиливает высвобождение фосфолипидов из форменных элементов крови, особенно из эритроцитов.

Раздражение блуждающего нерва или введение ацетилхолина приводит к выделению из стенок сосудов веществ, аналогичных тем, которые выделяются при действии адреналина. Следовательно, в процессе эволюции в системе гемокоагуляции сформировалась лишь одна защитно-приспособительная реакция - гиперкоагулемия, направленная на срочную остановку кровотечения. Идентичность сдвигов гемокоагуляции при раздражении симпатического и парасимпатического отделов вегетативной нервной системы свидетельствует о том, что первичной гипокоагуляции не существует, она всегда вторична и развивается после первичной гиперкоагуляции как результат (следствие) расходования части факторов свертывания крови.

Ускорение гемокоауляции вызывает усиление фибринолиза, что обеспечивает расщепление избытка фибрина. Активация фибринолиза наблюдается при физической работе, эмоциях, болевом раздражении.

На свертывание крови оказывают влияние высшие отделы ЦНС, в том числе и кора больших полушарий головного мозга, что подтверждается возможностью изменения гемокоауляции условно-рефлекторно. Она реализует свои влияния через вегетативную нервную систему и эндокринные железы, .гормоны которых обладают вазоактивным действием. Импульсы из ЦНС поступают к кроветворным органам, к органам, депонирующим кровь и вызывают увеличение выхода крови из печени, селезенки, активацию плазменных факторов. Это приводит к быстрому образованию протромбиназы. Затем включаются гуморальные механизмы, которые поддерживают и продолжают активацию свертывающей системы и одновременно снижают действия противосвертывающей. Значение условно-рефлекторной гиперкоагуляции состоит, видимо, в подготовке организма к защите от кровопотери.

Система свертывания крови входит в состав более обширной системы - системы регуляции агрегатного состояния крови и коллоидов (PACK), которая поддерживает постоянство внутренней среды организма и ее агрегатное состояние на таком уровне, который необходим для нормальной жизнедеятельности путем обеспечения поддержания жидкого состояния крови, восстановления свойств стенок сосудов, которые изменяются даже при нормальном их функционировании.

Используемая литература:

Исследование системы крови в клинической практике. / Под ред. Г. И. Козинца и В. А. Макарова. - М.: Триада-Х, 1997.

Пантелеев М. А., Васильев С. А., Синауридзе Е. И., Воробьев А. И., Атауллаханов Ф. И. Практическая коагулология / Под ред. А. И. Воробьева. - М.: Практическая медицина, 2011.

Физиология человека под редакцией В.М.Покровского, Г.Ф.Коротько.

Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови. Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле. В состав системы фибринолиза входят следующие компоненты:

1) фибринолизин (плазмин). Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови;

2) активаторы плазминогена (профибринолизина). Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии. В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате;

3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.

Процесс фибринолиза проходит в три фазы.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием. Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Различают два вида фибринолиза – ферментативный и неферментативный.

Ферментативный фибринолиз осуществляется при участии протеолитического фермента плазмина. Происходит расщепление фибрина до продуктов деградации.

Неферментативный фибринолиз осуществляется комплексными соединениями гепарина с тромбогенными белками, биогенными аминами, гормонами, совершаются конформационные изменения в молекуле фибрина-S.

Процесс фибринолиза идет по двум механизмам – внешнему и внутреннему.

По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена.

Во внутреннем пути активации принимают участие проактиваторы и активаторы фибринолиза, способные превращать проактиваторы в активаторы плазминогена или же действовать непосредственно на профермент и переводить его в плазмин.

Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации.

Процесс фибринолиза рассматривается в тесной связи с процессом свертывания крови. Их взаимосвязи осуществляются на уровне общих путей активаций в реакции ферментного каскада, а также за счет нервно-гуморальных механизмов регуляции.

Физиология фибринолиза

Система фибринолиза – ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью противоположна системе свертывания крови. Фибринолиз ограничивает распространение свертывания крови по сосудам, регулирует проницаемость сосудов, восстанавливает их проходимость и обеспечивает жидкое состояние крови в сосудистом русле. В состав системы фибринолиза входят следующие компоненты:

1) фибринолизин (плазмин). Находится в неактивном виде в крови в виде профибринолизина (плазминоген). Он расщепляет фибрин, фибриноген, некоторые плазменные факторы свертывания крови;

2) активаторы плазминогена (профибринолизина). Они относятся к глобулиновой фракции белков. Различают две группы активаторов: прямого действия и непрямого действия. Активаторы прямого действия непосредственно переводят плазминоген в активную форму – плазмин. Активаторы прямого действия – трипсин, урокиназа, кислая и щелочная фосфатаза. Активаторы непрямого действия находятся в плазме крови в неактивном состоянии в виде проактиватора. Для его активации необходимы лизокиназа тканей, плазмы. Свойствами лизокиназы обладают некоторые бактерии. В тканях находятся тканевые активаторы, особенно много их содержится в матке, легких, щитовидной железе, простате;

3) ингибиторы фибринолиза (антиплазмины) – альбумины. Антиплазмины тормозят действие фермента фибринолизина и превращение профибринолизина в фибринолизин.

Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

II фаза – превращение плазминогена в плазмин за счет отщепления липидного ингибитора под действием активатора.

В ходе III фазы под влиянием плазмина происходит расщепление фибрина до полипептидов и аминокислот. Эти ферменты получили название продуктов деградации фибриногена / фибрина, они обладают выраженным антикоагулянтным действием. Они ингибируют тромбин и тормозят процесс образования протромбиназы, подавляют процесс полимеризации фибрина, адгезию и агрегацию тромбоцитов, усиливают действие брадикинина, гистамина, ангеотензина на сосудистую стенку, что способствует выбросу из эндотелия сосудов активаторов фибринолиза.

Различают два вида фибринолиза – ферментативный и неферментативный.

Ферментативный фибринолиз осуществляется при участии протеолитического фермента плазмина. Происходит расщепление фибрина до продуктов деградации.

Неферментативный фибринолиз осуществляется комплексными соединениями гепарина с тромбогенными белками, биогенными аминами, гормонами, совершаются конформационные изменения в молекуле фибрина-S.

Процесс фибринолиза идет по двум механизмам – внешнему и внутреннему.

По внешнему пути активация фибринолиза идет за счет лизокиназ тканей, тканевых активаторов плазминогена.

Во внутреннем пути активации принимают участие проактиваторы и активаторы фибринолиза, способные превращать проактиваторы в активаторы плазминогена или же действовать непосредственно на профермент и переводить его в плазмин.

Значительную роль в процессе растворения фибринового сгустка играют лейкоциты в силу своей фагоцитарной активности. Лейкоциты захватывают фибрин, лизируют его и выделяют в окружающую среду продукты его деградации.

Процесс фибринолиза рассматривается в тесной связи с процессом свертывания крови. Их взаимосвязи осуществляются на уровне общих путей активаций в реакции ферментного каскада, а также за счет нервно-гуморальных механизмов регуляции.

Фибринолиз является физиологическим процессом, связанным с растворением образующихся в сосудах тромбов, в результате активации системы свертывания . Чтобы сохранить текучесть циркулирующей крови, и в то же время эффективно тормозить возникающие кровотечения, в организме должно существовать динамическое равновесие между двумя важнейшими процессами гемостаза, а именно между процессами свертывания крови и процессами фибринолиза (растворения тромба).

После повреждения стенки сосуда активируется система свертывания, в результате каскада многих реакций происходит превращение фибриногена в нерастворимый фибрин и образование сгустков крови, которые препятствуют кровотечению. Однако, после остановки кровотечения, возникающие сгустки крови должны быть растворены. Чтобы это произошло, активируется система фибринолиза и, прежде всего, её основной компонент - плазмин.

Активный плазмин образуется в результате преобразования плазминогена в ходе сложного каскада реакций. Плазмин является ферментом, который расщепляет фибрин, сгусток, а время, которое необходимо для этого процесса, называется временем фибринолиза . Для того, чтобы оценить время фибринолиза можно применить измерение времени лизиса сгустка эуглобулиновой фракции.

Способы определения и допустимое время фибринолиза

Для изучения времени лизиса эуглобулина, необходимо загрузить образец венозной крови, как правило, из локтевой вены. Человек, у которого будет проводиться исследование, должен быть натощак в момент забора материала для исследований. Кровь берется в пробирку, содержащую 3,8% цитрат натрия .

Полученная таким образом плазму подвергают воздействию низкого pH (ниже 4). Это приводит к осаждению эуглобулиновой фракции плазмы, то есть такой, которая лишена большинства ингибиторов плазминогена (то есть веществ, которые затормаживают плазмин и фибринолиз).

У получаемой фракции измеряется затем, в постоянных условиях температуры, время, необходимое для естественного лизиса эуглобулинового тромба, т.е. время фибринолиза . Правильное составляет от 100 до 300 минут. Это время зависит от количества в плазме фибриногена, плазмина и различных активаторов плазминогена (например, тканевый активатор плазминогена).

Интерпретация результатов определения времени фибринолиза

Время лизиса сгустка эуглобулина сокращается при таких заболеваниях, как, например:

Увеличение времени фибринолиза происходит в случае заболеваний, которые приводят к нарушению естественных фибринолитических механизмов, например, атеросклероз сосудов .

Как видно, оценка времени фибринолиза является важным тестом в диагностике нарушений системы гемостаза.