Диафрагма, управление глубиной резкости. Технология автоматического управления диафрагмой P-Iris

Диафрагма в объективах это устройство, которое позволяет изменять относительное отверстие объектива и регулировать диаметр проходящего через него пучка света.

Число диафрагмы

Относительное отверстие объектива, регулируемое диафрагмой, имеет свое обозначение и называется числом диафрагмы (или диафрагменным числом). Чем выше это число, тем меньше диаметр относительного отверстия и меньше света проходит к матрице/пленке фотоаппарата. Вычисляется как соотношение фокусного расстояния к диаметру диафрагмы f/D (например, f/1.4), стандартные значения имеют шаг в один диафрагменный стоп (корень из двух) — 1.4, 2, 2.8, 4, 5.6, 8 и т.д вплоть до f/64.

С изменением значения диафрагмы изменяется не только освещенность, но и линия . Комбинация значений диафрагмы и образуют экспопару. Вместе с изменяемой матрицы образуют .

Больше всегда меньшее число

Запомните — чем крупнее число, тем поступает меньше света, и наоборот. То есть, при зажатой до f/22 диафрагме света всегда поступит меньше, чем при открытой до f/1.4. В работе вам, думаю, не придется зажимать значения до предела — основные рабочие параметры это от полностью открытой (f/1.4, f/2, f/2.8 например, — зависит от модели объектива) до 8-16. С этим связана небольшая путаница — на самом деле, бо льшим числом считается значение открытой диафрагмы, так как большо е отверстие всегда пропускает больше света. Отсюда число диафрагмы f/2.8 в любом случае больше f/22.


Также имеется понятие «светосильность» объектива — чем шире относительное отверстие, тем объектив светосильнее. В основном, понятие «светосила» используется именно в этом ключе, хотя имеет немного не то определение. Не каждый светосильный объектив лучше. Светосильность — не панацея для решения фотографических задач.

Управление диафрагмой

Существует множество реализаций диафрагмы, однако бо льшее применение в фото и видеотехнике нашлось у ирисовой. Ирисовая диафрагма позволяет более плавно изменять значения относительного отверстия, имеет компактные размеры. Помимо ирисовой диафрагмы использовалась также:

  • Револьверная диафрагма
  • Вставная диафрагма

Привод ирисовой диафрагмы имеет различные вариации:

  • Механизм ручного доводчика (с кольцом предустановки и без)


Один из объективов с кольцом предустановки диафрагмы

Фиксация необходимого значения диафрагмы кольцом предустановки производилась для того, чтобы получить возможность навестись на резкость при более светлом видоискателе. Непосредственно фотосъемка проводится уже на закрытой диафрагме и установленной глубине резкости. Большинство конструкций таких фиксаторов приводится в действие потягиванием кольца предустановки на себя и поворотом на необходимое значение.

  • Прыгающий механизм (с репетиром и без)


Яркий представитель семейства объективов с прыгающим механизмом диафрагмы

Прыгающий механизм диафрагмы позволяет установить необходимую диафрагму без использования кольца предустановки и увеличивает оперативность при работе. Репетир (автоматический доводчик) использовался для предпросмотра глубины резко изображаемого пространства непосредственно перед спуском . Устройство автоматического доводчика приводилось в действие дополнительным рычажком на корпусе камеры, или объектива.

Зачастую привод был сопряжен с кнопкой спуска затвора, при этом нажатая наполовину кнопка спуска включала режим предпросмотра ГРИП.

Во время фотосъемки диафрагма с электромагнитным приводом автоматически закрывается до значения, заданного электронике камеры. Для объективов с электронным управлением диафрагмы репетир реализуется в виде программной функции , активируемой кнопкой на корпусе фотоаппарата или их комбинацией.

Боке

Боке это японское название зоны нерезкости, по сути — изображение фона за снимаемым объектом. Каждый объектив имеет свой рисунок зоны нерезкости. У вариообъективов боке достаточно жесткое — заметны как геометрические, так и цветовые пропорции объектов, стоящих за объектом фотосъемки. У объективов с фиксированным фокусным расстоянием, «фиксов», боке в плане размытия может доходить до немыслимых значений.


Боке объектива Canon 70-200 f/4 на f/4

Как правило, объект съемки отделяется от фона явным образом. Большая разница заметна при сравнении фотографий, снятых на «репортажный» универсальный объектив, и более «художественные» объективы с фиксированным фокусным расстоянием. В величинном отношении, я бы сравнил это так: рисунок зоны нерезкости у зума на f/2.8 будет примерно такой же, как у фикса на f/4-5.6 на одном и том же фокусном расстоянии.


Боке Sigma 30mm f/1.4 DC OS HSM на f/5.6

Конечно, еще немало зависит от самой оптической схемы. Отсюда, кстати, и вытекают пристрастия различных категорий фотографов к разнообразным объективам — из-за особенностей оптической схемы, разные оптические схемы дают различный художественный эффект, — у какого то объектива есть фирменное закручивание фона, у другого — эффект масляных красок. Почти бесплатно, без регистрации и смс крутят фон известные на постсоветком пространстве объективы


Боке Sigma 17-50mm f/2.8 на f/3.2

Японцы же, вообще, считают всякое проявление элементов фона в боке на открытых значениях диафрагмы аберрацией, и ценят ровные цвета (то есть, элементы за объектом размываются тупо до состояния цвета, без каких-либо намеков на пропорции). Конечно, не смотря на все это, качественный портрет можно снять и на вариообъектив. Все зависит от опыта фотографа.

Количество лепестков диафрагмы и их влияние на рисунок зоны нерезкости

Количество лепестков диафрагмы варьируется. Как правило, на недорогие объективы ставится малое количество лепестков диафрагмы. На «прикрытых» значениях диафрагмы такое количество лепестков будет давать неровные круги («гайки») источников света в боке. Иногда вы можете встретить звездообразное отверстие диафрагмы у объектива — при малом количестве лепестков, такое решение добавляет некоторую художественность в рисунок зоны нерезкости.

Звездообразные блики Ricoh Rikenon 28mm f/2.8

Диафрагмирование и дифракция

Качество картинки, выдаваемое оптикой, улучшается до определенного значения диафрагмы. Более широкие пучки света имеют противную особенность рисовать на картинке дополнительные . Эта особенность уменьшает свое воздействие на картинку при небольшом прикрытии диафрагмы. Как правило, цветовые и скажения и виньетирование пропадает с f/4 практически полностью.

Метод устранения хроматических аберраций таким образом, называется диафрагмированием. Не стоит заигрываться с максимальными значениями диафрагмы — чем больше значение, тем выше шанс достигнуть для текущей конфигурации камера+объектив.

Как с этим жить

Управляя диафрагмой вы можете добиться как более художественной картинки, так и увеличения ГРИП, так и внесения поправки в экспозицию.

Большее размытие фона и тонкая получается именно на максимально «открытых» значениях, чем пользуются в портретной и художественной фотографии. Важно запомнить, что при съемке портрета тонкая ГРИП и максимально открытое относительное отверстие объектива позволяют явным образом отделить объекты от фона. Для этого, собственно, и используются светосильные объективы и открытые диафрагмы.

Учтите — чем выше максимальное число диафрагмы объектива, тем оптическая схема дороже — отсюда высокая удельная стоимость качественных «светлых» объективов. Светосильный объектив позволит увеличить максимально возможную выдержку затвора и избежать шевеленки на фото в сумерках, без увеличения светочувствительности матрицы и с сохранением приемлемого уровня шумов на фото.

Боке, и вытекающая из этого рисунка художественность объектива зависит от фокусного расстояния объектива, конфигурации его оптической схемы, установленного значения диафрагмы. Используйте полученные знания о диафрагме, и связанными с ней другими параметрами, чтобы поразить своих друзей художественными фотокарточками.

Разрешается использование контента в любых целях, при условии сохранения ссылки на источник.

Подобные статьи

Она предназначена для регулирования количества света, попадающего на ПЗС-матрицу видеокамеры. Диафрагма состоит из лепестков, количество которых может быть от 3 до 20. Чем больше лепестков в диафрагме, тем больше отверстие диафрагмы приближается к окружности, создавая тем самым равномерно освещенное световое пятно на ПЗС-матрице. Шкала диафрагмы стандартизована и образует следующий ряд относительных отверстий:

1:0,7; 1:1; 1:1,4; 1:2; 1:2,8; 1:4; 1:5,6; 1:8; 1:11; 1:16; 1:22; 1:32; 1:45; 1:64.

Внешний вид ирисовой диафрагмы, с различными значениями относительных отверстий, приведен на рис. 1. Знаменатели относительных отверстий (2; 2,8; 4; 5,6) называются диафрагменными числами.

Значение диафрагмы влияет на такие параметры, как:

Аберрация - чем меньше отверстие диафрагмы, тем ниже уровень аберраций и выше разрешение, но только до определенного предела (обычно 1:8 - 1:11), далее разрешение опять падает из-за влияния дифракции;

- глубина резкости - чем меньше отверстие, тем больше глубина резкости.

К сожалению, значение диафрагм на объективах, используемых в CCTV, определить невозможно в связи с тем, что на корпусе объектива отсутствует шкала диафрагменных чисел.

По управлению диафрагмой объективы CCTV можно разделить на группы в соответствии с рис. 2:



Рис. 2

Объективы без диафрагмы используются только с видеокамерами, имеющими автоматический электронный затвор (Shutter).

Объективы с диафрагмой подразделяются в свою очередь на объективы с ручной диафрагмой и объективы с автоматической диафрагмой.

Объективы с ручной диафрагмой используются в местах с постоянной освещенностью (в помещениях с искусственным освещением). Такие объективы можно использовать и на улице, но с камерами, имеющими режим автоматического электронного затвора.

Объективы с автоматической диафрагмой управляют световым потоком за счет сигналов, приходящих от видеокамеры. Такие объективы используются в условиях больших перепадов освещенности и внешне отличаются от остальных объективов наличием кабеля с разъемом, который подключен к видеокамере.

По сигналам управления, приходящим от видеокамеры, объективы с автоматической диафрагмой подразделяются на:

Управление диафрагмой в соответствии с изменяющимся видеосигналом (Video Drive);

Управление диафрагмой постоянным током (Direct Drive).

Управление диафрагмой по видеосигналу (Video Drive) означает, что анализ видеосигнала и управление мотором диафрагмы осуществляет специальное устройство, размещенное в объективе.

Управление диафрагмой по постоянному току (Direct Drive) означает, что схема принятия решения о положении диафрагмы находится в видеокамере, а в объективе имеется только мотор как исполнительное устройство.

На корпусе объективов с управлением диафрагмой по видеосигналу присутствуют два регулирующих элемента. Обозначаются они как «Level» и «ALC».

Регулировка «Level» используется для настройки режима работы электронной схемы объектива по реальной освещенности. При вращении регулятора «Level» мы искусственно изменяем значение диафрагмы. На мониторе изменение положения регулятора «Level» воспринимается как изменение яркости изображения.

Регулятор «ALC» имеет две области регулирования. Это область средних значений (обозначается «А») и область пиковых значений (обозначается «Р»).

Регулятор «ALC» используется для устранения обратной засветки в высококонтрастных сюжетах.

Объективы с управлением диафрагмой по постоянному току (Direct Drive) не имеют на своем корпусе никаких регулировок. Настройка таких объективов осуществляется на видеокамере, которая должна иметь уже известные нам органы настройки «Level» и «ALC».

F-число объектива указано на корпусе любого объектива в виде F/1.3. Этот параметр не что иное, как диафрагменное число. (Диафрагменные числа определяют величину отверстия диафрагмы.)

F-число - это параметр объектива, при котором диафрагма полностью открыта. Отметим, что чем больше диафрагменное число, тем меньше света попадает на ПЗС-матрицу. Например, объектив с F числом F/4 пропускает значительно меньший световой поток чес объектив с F числом F/2,8 Часто объективы с низким F-числом называют светосильными объективами или быстрыми объективами (faster lens). Это связано с тем, что на заре фотографии сократить время экспозиции пленки пытались путем увеличения количества света (низкое F-число), проходящего через объектив.

Шкала диафрагменных чисел разработана таким образом, чтобы освещенность при переходе к соседним значениям изменялась в два раза. Эту разницу между соседними делениями шкалы диафрагмы называют ступенями или F-stop.

Значение, обратное F-числу, называется относительным отверстием.

Относительное отверстие это отношение диаметра отверстия диафрагмы к его фокусному расстоянию.

Иногда вместо F-числа на объективах указывается величина относительного отверстия, которое записывается как 1: 1.3.

Относительное отверстие объектива уменьшают ирисовой диафрагмой, позволяющей плавно менять её величину. На оправу объективов (в основном, фотографических) нанесена шкала из знаменателей относительных отверстий (диафрагменные числа), соответствующих различному значению отверстия диафрагмы. Перевод ирисовой диафрагмы на одно деление изменяет относительное отверстие в 1,4 раза, что дает увеличение или уменьшение освещенности оптического изображения в два раза, за исключением первых двух чисел ирисовой диафрагмы, у которых такого изменения может и не быть.

По величине относительного отверстия объективы делятся на:

сверхсветосильные от 1: 0,7 до 1: 2;

светосильные от 1: 2,8 до 1: 4,5;

малосветосильные от 1: 5,6 до 1: 16.

Автоматическая диафрагма в объективах обеспечивает возможность видеокамере иметь на ПЗС-матрице постоянный уровень освещенности, независимо от ее изменения на объекте. Для решения такой задачи автоматическая диафрагма должна иметь в своем составе устройство управления диафрагмой и блок анализа уровня освещенности на ПЗС-матрице. В качестве элемента управления диафрагмой используется миниатюрный электромотор, а освещенность на ПЗС оценивается по видеосигналу, формируемому видеокамерой. Чтобы привязать уровень освещенности на объекте к допустимому уровню освещенности на ПЗС-матрице, на объективе есть регулировка «Level». Если эта регулировка выставлена неправильно, то изображение на мониторе может быть или очень темным, или настолько ярким, что некоторые места изображения будут пересвеченными. Поэтому правильным положением регулятора «Level» можно считать такое, при котором при вращении регулятора изображение из пересвеченного становится нормальным. После такой настройки, какой бы ни была освещенность на объекте, диафрагма займет положение, при котором освещенность на ПЗС-матрице будет максимально допустимой (подробно см. в разделе «Настройка и регулировка объектива»).


Рассмотрим, как работает автодиафрагма. Установим перед видеокамерой тест-таблицу (рис. 3а), состоящую из полос разной яркости. К видеокамере подключим монитор, и наша тест-таблица будет отображаться на экране в виде шести градаций яркости (рис. 3b). Ко второму выходу монитора подключим осциллограф и настроим его на отображение одной строки. На экране осциллографа изображение тест-таблицы будет выводиться в виде шести равномерно расположенных ступенек (рис. 3с). Нижняя ступенька соответствует черной полосе на тест-таблице, а самая верхняя - белой полосе. Ступеньки, находящиеся между ними, передают промежуточные градации яркости. Для наглядности справа от осциллограммы изображена вертикальная полоска с яркостями соответствующих ступенек.

А теперь представим себе, что по каким-то причинам уровень яркости белой полосы на нашей тест-таблице значительно возрос. Такое увеличение яркости на входе видеокамеры будет присутствовать и в ее выходном сигнале (рис. 4а) в виде существенно увеличенной амплитуды белой полосы относительно «уровня белого». Поэтому автодиафрагма сразу же начнет уменьшать отверстие диафрагмы, тем самым, уменьшая и амплитуду выходного сигнала до такого значения, когда амплитуда белой полосы вернется к «уровню белого» видеосигнала (рис. 4b).


Но с уменьшением амплитуды белой полосы пропорционально уменьшаются уровни и всех остальных градаций яркости. В результате вместо шести градаций с равномерным изменением яркости на экране мы получаем три градации, причем большая часть экрана становится черной (рис. 4с). Такой случай характерен при работе камеры в высококонтрастных сюжетах, когда объект наблюдения, находящийся на переднем плане, представляет темное пятно, а фон - это ярко освещенный задний план.

Частично исправить такую ситуацию может регулятор «ALC». Вращая его, мы заставляем автоматическую диафрагму объектива «не обращать внимания» на яркий участок в кадре и даже допустить пересвечивание экрана в этом месте. Зато, манипулируя регуляторами «Level» и «ALC», нам удастся сохранить большую часть исходных градаций яркости.

Когда освещенность на объекте изменяется одинаково для всех градаций яркости, то автоматическая диафрагма отрабатывает их, и мы на мониторе не замечаем никаких изменений.

Однако стоит отметить, что отверстие диафрагмы начинает изменять свое значение в зависимости от того, как настроен регулятор ALC. Если регулятор установлен в положение «А», то диафрагма начнет изменять свое значение только в том случаи, когда освещенность изменится на большей части кадра (обычно половина кадра).

Если регулятор ALС установлен в положении «Р», то диафрагма отслеживает изменение освещенности вплоть до пиксела.

5. Настройки и регулировки объектива

Настройки объектива можно разделить на две группы: первая относится к настройкам, обеспечивающим нормальную работу объектива во всем диапазоне освещенностей, а другая группа настроек определяет степень деталировки и глубину резкости передаваемого изображения.

К настройкам объектива первой группы можно отнести:

1) настройку обратного фокуса,

2) настройку «ALC» и «Level».

К настройкам объектива второй группы относятся:

1) выбор глубины резко изображаемого пространства,

2) выбор расстояния наводки на резкость.

Остановимся на настройках обратного фокуса, ALC и Level.



Рис. 5

Настройку обратного фокуса необходимо проводить в любом случае, производится ли замена объектива на видеокамере или устанавливается новый объектив. Причем алгоритмы настроек у объективов с постоянным фокусным расстоянием и объективов с переменным фокусным расстоянием (трансфокаторов) значительно отличаются.

На практике неправильная установка объектива выражается в том, что в дневное время суток изображение от камер не вызывает нареканий, а с наступлением темноты изображение может стать нерезким или пропасть совсем. Этот эффект называется неправильной установкой «обратного фокуса» и возникает в связи с тем, что глубина резкости объектива, которую мы обычно воспринимаем при рассматривании объекта перед камерой, распространяется и на область за объективом, в которой ПЗС-кристалл выпадает из области резкого изображения. Настройка этого параметра определяет положение задней линзы объектива относительно ПЗС-матрицы камеры.

Настройка «обратного фокуса» у объективов с постоянным фокусным расстоянием

Для этого необходимо проделать следующее.

1. Установить объектив в посадочное место видеокамеры.

2. Полностью открыть диафрагму объектива (установить нейтральный светофильтр нужной плотности).

3. Установить движок расстояний на объективе в положение «бесконечность».

4. Ослабить фиксатор, удерживающий посадочное место объектива в видеокамере. При наличии у видеокамеры специального регулятора разблокировать его, ослабив специальный фиксирующий винт.

5. Используя график рис. 5, определить расстояние от камеры до объекта фокусировки, по которому будем проверять наличие резкости или ее отсутствие. Например, если у нас объектив с фокусным расстоянием 4 мм, то это расстояние равно 12 м.

6. На удалении 12 м от видеокамеры найти объект, по которому будет производиться наводка на резкость.

Значение фокусного расстояния (допустим, 50 мм).

5. Ослабить фиксатор, удерживающий посадочное место объектива в видеокамере. При наличии у видеокамеры специального регулятора разблокировать его, ослабив специальный фиксирующий винт.

6. Используя график рис. 5, определить расстояние фокусировки объектива (170 м).

7. На удалении фокусировки объектива (170 м) найти объект, по которому будет производиться наводка на резкость.

8. Вращая объектив с посадочным местом, добиться резкого изображения найденного объекта. При наличии у видеокамеры специального регулятора, выполнить настройку с его помощью.

9. Установить минимальное значение фокусного расстояния (5 мм).

10. Используя график рис. 1, определить расстояние фокусировки объектива (17 м).

11. На удалении фокусировки объектива (17 м) найти объект, по которому будет производиться оценка резкости объекта.

12. Если резкость объекта вас устраивает, то настройка закончена, если нет, то читайте дальше.

У объективов с автоматической диафрагмой на видеокамере нужно включить автоматический электронный затвор, а диафрагму открыть подачей напряжения на соответствующие контакты автоириса.

Никакие нейтральные светофильтры в этих случаях не нужны.

Регуляторы «ALC» и «Level» предназначены для получения нормального изображения в высококонтрастных сюжетах, когда объект наблюдения находится на переднем плане, а задний план сильно освещен. Объект наблюдения в этом случае будет представлять собой темный силуэт (рис. 6).

Попробуем «объяснить» объективу, что в кадре рис. 6 является важной информацией (человек), а что второстепенной. Для этого выполним последовательность следующих действий.

1. Установим регулятор «ALC» в положение «P» (пиковые значения). При этом задний план изображения на экране должен стать пересвеченным, а объект на переднем плане еще темнее.

2. Регулятором «Level» увеличим яркость объекта на переднем плане.

3. Регулятор «ALC» будем вращать в направлении положения «А» (средних значений) до момента, когда яркость пересвеченного заднего плана уменьшится.

4. Повторяем пункты 2-3 до тех пор, пока изображение на переднем плане не будет передавать максимальную информацию об объекте.

Существует еще одна ситуация, в которой регулировки «ALC» и «Level» могут нам помочь. Это защита объектива от мощных точечных источников света (фары автомобилей). Вот некоторые рекомендации по такой настройке:

1. Установите регулятор «ALC» в положение «P» (пиковые значения). При этом задний план изображения на экране должен стать пересвеченным, а объект на переднем плане еще темнее.

2. Введите в поле зрения ТВ-камеры светящийся объект (лампочку, фонарик, светодиод и пр.) и, перемещая его вдоль оси поля зрения камеры, добейтесь размеров объекта на мониторе (3-5)% от высоты растра (абсолютно не важно, если объект при этом окажется не в фокусе). Медленно поворачивая потенциометр «ALC» в направлении «A», остановитесь на моменте начала ограничения по «белому» видеосигнала от светящегося объекта. При такой регулировке преднамеренное направление света от точечного источника в ТВ-камеру не приведет ее к ослеплению, а на объектах больших по размерам будут просматриваться детали, что весьма важно в процессах обнаружения и различимости.

3. Уберите светящийся объект из поля зрения камеры и при выбранном положении потенциометра «ALC» окончательно выставьте уровень видеосигнала 1 вольт; не забудьте при этом, что выход видеосигнала ТВ-камеры должен иметь нагрузку 75 ом.

Примечание автора . К сожалению, некоторые недобросовестные поставщики предлагают объективы, у которых регулировки « Level » и « ALC » не работают при нормально функционирующей автоматической диафрагме, отрегулированной в заводских условиях.

Настройка регулятора «Level» в основном не требуется, так как заводская установка, как правило, удовлетворяет пользователей. Но, несмотря на это, в практической деятельности иногда приходится проводить такую регулировку. Порядок настройки следующий.

1. Вращая регулятор «Level», проверьте, что яркость картинки на мониторе изменяется.

2. Установите регулятор в такое положение, при котором картинка станет пересвеченной.

3. Вращая регулятор в направлении уменьшения яркости экрана, найдите такое положение, при котором картинка из пересвеченной станет нормальной.

4. Относительно этого положения поверните регулятор в том же направлении на 1/4-1/5 оборота.

После такой настройки, какой бы ни была освещенность на объекте, диафрагма займет положение, при котором освещенность на ПЗС-матрице будет максимально допустимой.

А.Гонта «Практическое пособие по CCTV ». г. Москва: Спецкнига". 2006г

Одно из первых понятий, которые узнает человек, когда начинает серьезнее относиться к процессу фотографирования, – это . Устройство в объективе, через которое проходит свет, принято называть диафрагмой. В зависимости от ее размера мы можем получить определенную глубину резкости. Большая диафрагма создает малую глубину резкости, а узкая, соответственно, отвечает за большую. Давайте поближе рассмотрим это фундаментальное понятие в фотографии, чтобы никогда не путаться и совершенно точно знать, что можно получить в результате, применяя те или иные значения размера диафрагмы на практике.


1. Двойной эффект

Диафрагма измеряется с помощью «f-числа» , которое иногда называют «f-стоп», оно показывает величину диаметра отверстия. Необходимо помнить, что меньшее f-число соответствует больше открытой диафрагме, при которой большее количество света попадает на светочувствительный элемент, в то время как более высокое f-число означает более узкую диафрагму (меньше света).

Базовое число диафрагмы – единица. Хотя в мире не так много объективов, у которых диафрагма может раскрыться до 1, тем не менее, они существуют. Умножая на 1,4, получаем стандартный диафрагменный ряд: 1; 1,4; 2; 2,8; 4 и т.д. каждое последующее число говорит о том, что количество света, проходящего через объектив, стало больше или меньше почти в два раза. То есть снимок на 2,8 с выдержкой 1/60 секунды будет засвечен также, как снимок на 4 с выдержкой 1/30. Чем больше число диафрагмы, тем сильнее она закрывается и тем с меньшим количеством света экспонируется снимок.

Полный ряд значений диафрагмы выглядит следующим образом: f/1,4; f/2; f/2,8; f/4; f/5,6; f/8; f/11; f/16; f/22 и f/32. Большинство современных камер позволяют управлять диафрагмой с шагом в 1/3 стопа , поэтому при регулировке диафрагмы на современном фотоаппарате между числами 2,8 и 4,0 можно найти такие промежуточные значения, как 3,2 и 3,5.

Понимание работы двойного увеличения пропускной способности при изменении числа диафрагмы на 1 стоп полезно при настройке экспозиции и выборе выдержки и/или настройки чувствительности. Разница в экспозиции кадра при открытии диафрагмы с f/8 до f/5,6 как при смене чувствительности ISO 100 до 200 будет одинаковой – т.е. на один стоп светлее в обоих случаях. Аналогичным образом можно получить снимок на один стоп светлее, если чувствительность сохранить прежней, а экспозицию скорректировать выдержкой, сменив 1/125 на 1/60 с. И будет тот же самый результат, как если бы изменили диафрагму с f/8 на f/5,6.


2. F-количество

Многих начинающих фотографов смущает тот факт, что небольшое отверстие имеет большее значение f (или f/число), в то время как большие значения диафрагмы имеют небольшие f-числа. Все дело в том, что значение диафрагмы – это отношение диаметра выходного зрачка объектива к его фокусному расстоянию, выражается дробью с числителем, равным единице. В фотографии вместо единицы часто используют латинскую букву f, которая конкретизирует назначение дроби: например, относительное отверстие 1/5,6 обозначается f/5,6. Из этого видно, что для разных объективов одно и то же значение диафрагмы будет обозначать разный диаметр. Например, диафрагма f/11 на объективе 100 мм (100/11) будет составлять 9,09 мм. Для 50-мм объектива та же самая диафрагма будет уже (50/11) равна 4,54 мм.

Теперь наглядно понятно, что не может пройти одинаковое количество света через отверстие в 9,09 мм и 4,54 мм.


3. Дифракция


Дифракция – это искривление лучей света, когда они проходят по краю лепестков диафрагмы. При закрытии диафрагмы для увеличения глубины резкости увеличивается дифракция, которая смягчает изображение, так как лучи не сходятся в одну точку на поверхности датчика, а преломляются и, следовательно, дают мягкий образ. Для получения принципиально четкого изображения по всей площади картинки обычно не используют при съемке наименьшее возможное значение диафрагмы.

4. Оптимальная диафрагма

Для большинства объективов характерно, что на максимально открытой диафрагме сложно добиться максимальной резкости в кадре. Как правило, диафрагму чуть прикрывают. Оптимальное значение диафрагмы для каждого объектива получают экспериментальным путем. Нужно проследить за дифракцией – при каких значениях f она будет минимально приемлемой для фотографа, то значение диафрагмы можно считать оптимальным для работы.

Для тестирования объектива важным моментом является использование прочного штатива для фотоаппарат . Необходимость в этом продиктована тем, что следует фокусироваться на одном и том же месте. После того, как тестовые снимки сделаны, просмотрите их в 100% увеличении на экране монитора. Вы сможете выбрать наиболее резкие и, проверив данные EXIF, определить при какой диафрагме была сделана та или иная фотография. Это и будет оптимальное значение диафрагмы для данного объектива.


by Helena Kuchynková

5. Резкость объектива и боке – почувствуйте разницу

Боке (бокэ) – японское слово и обозначает художественное размытие фона. Хорошим боке считается такое, которое как бы скругляет основные моменты изображения, нежели оставляет стороны предметов, которые находятся вне фокуса, резко очерченными, например, образующими четкий шестиугольник. Боке следует отнести к свойствам объектива, результату работы его оптических элементов и диафрагмы, а не к возможностям камеры, которой сделана фотография.



by Tillmann van de Maan

Наилучшее боке получается у тех объективов, которые имеют большее количество лепестков и закругленные края.

6. АФ и диафрагма


Для начала достаточно будет знать, что чем шире угол лучей света, тем точнее будет автофокус. На приведенной схеме угол лучей, полученных от объектива f/2,8 (синие линии), будет больше, чем от объектива f/4 (красные линии), которые в свою очередь больше, чем от объектива f/5,6 (желтые линии). При использовании объектива с максимальной диафрагмой f/8, только самые точные датчики способны работать, но фокусировка будет медленной и менее точной. Именно по этой причине прекращают автофокусироваться объективы f/5,6, когда фотограф пытается использовать телеконвертер, снижающий их максимальную светосилу до f/8 или f/11.

Это, конечно же, не все те знания, которые необходимы опытному пользователю, тем не менее, для начала следует очень хорошо ориентироваться в данных технических тонкостях. Мы будем и дальше давать уроки по фундаментальной теории фотографии – оставайтесь с нами, делитесь уроками с друзьями и с удовольствием используйте свой творческий потенциал.

1. Что такое диафрагма

Диафрагма (aperture) - относительное отверстие объектива, позволяющее регулировать поток света, поступающего на матрицу цифрового фотоаппарата и управлять глубиной резко изображаемого пространства.


2. Лепестки диафрагмы

Диафрагма состоит из тонких металлических лепестков, которые закрывают или открывают отверстие для света. В зависимости от модели объектива их может быть больше или меньше. Количество лепестков определяет форму отверстия диафрагмы - она может быть приближенна к кругу, либо иметь форму шестигранника. Чем больше лепестков, тем отверстие круглее, и красивее рисунок у объектива. Например, при съемке на объектив с большим количеством лепестков, в зоне не резкости образуются ровные круглые пятна, а не геометрические фигуры, напоминающие гайки.
Современные объективы имеют закругленные лепестки, несмотря на их небольшое количество, обеспечивают мягкое и красивое размытие фона.


3. Диафрагменное число, ступени, значения диафрагмы

Диафрагменное число - это отношение фокусного расстояния объектива к диаметру диафрагмы, обозначается как f/x, где x и есть его числовое значение. Диафрагма контролирует поток света, поступающий на светочувствительные элементы матрицы. Чем больше диафрагменное число, тем меньше пропускающее отверстие, и наоборот, чем меньше диафрагменное число, тем больше отверстие, соответственно проходит больше света. Для наглядности: f/16 - закрытая диафрагма, f/1.4 - открытая.

Значения диафрагмы измеряются в ступенях.

1.0 1.4 2 2.8 4 5.6 8 11 16 22

Каждая ступень отличается от предыдущей в 1,4 раза, при этом количество света, поступающего на матрицу фотокамеры, изменяется в два раза.

Для более точного выставления экспозиции в современных фотокамерах существуют промежуточные значения диафрагмы, равные 1/3 ступени:

1.0 1.1 1.2 1.4 1.6 1.8 2 2.2 2.5 2.8 3.2 3.5 4 4.5 5
5.6 6.3 7.1 8 9 10 11 13 14 16 18 20 22 25 29 32

4. Глубина резкости

Глубина резко изображаемого пространства (ГРИП) - это область, находясь в которой объект съемки будет изображен резко, а все, что выходит за ее пределы - размыто.

Глубина резкости зависит от следующих параметров:

  • диафрагма
    чем меньше диафрагменное число (открытая диафрагма), тем меньше глубина резкости, на закрытой диафрагме глубина резкости будет по всей глубине кадра;
  • фокусное расстояние объектива
    чем меньше фокусное расстояние объектива (например, широкоугольник), тем больше глубина резкости, на длиннофокусных объективах глубина резкости заметно сокращается;
  • расстояние до объекта съемки
    чем меньше расстояние от фотокамеры до объекта съемки, тем меньше ГРИП, чем больше расстояние, тем больше ГРИП.

Влияние диафрагмы на ГРИП.

5. Формула расчета ГРИП

R1 - передняя граница резко изображаемого пространства;
R2 - задняя граница резко изображаемого пространства;
R - расстояние в метрах, на которое производится наведение на резкость;
f - фокусное расстояние объектива (абсолютное, а не эквивалентное), в формулу подставляется значение в метрах;
K - знаменатель относительного отверстия объектива (число диафрагмы);
z - диаметр допустимого круга нерезкости, для негативов форматом 24х36 мм равный 0,03-0,05 мм (в формулу подставляется значение в метрах).


6. Управление диафрагмой

Первостепенная роль диафрагмы заключается в управлении глубиной резко изображаемого пространства. Значение диафрагмы выставляется в зависимости от поставленной цели. Например, при съемке пейзажей, когда резкость должна быть по всему полю кадра, оптимальным значением диафрагмы будет f/11 - f/16, при съемке портрета, где необходимо акцентировать внимание на объекте съемки, подойдет значение - f/1.2 - f/2.5, при этом главный объект будет находится в зоне резкости, а фон сильно размыт. При съемке на открытой диафрагме могут возникнуть определенные сложности, учитывая то, что зона резкости составляет всего-лишь милиметры, небольшое изменение угла наклона фотокамеры влечет за собой смещение фокуса.
Что следует учесть. На полностью открытой диафрагме могут появиться хроматические аберрации (цветовые искажения), а чрезмерное закрытие диафрагмы приводит к дифракции (потеря резкости).

7. Светосила и виды объективов

Объективы, в зависимости от своих технических характеристик, имеют разное минимальное значение диафрагмы. Самыми светосильными являются объективы с постоянным фокусным расстоянием - диафрагменное число от f/1,2 до f/2.8. На объективах с переменным фокусным расстоянием нередко можно увидеть порог значений f, например 18-55 f3.5-5.6. Это значит, что при фокусном расстоянии 18мм минимальное значение диафрагмы будет 3,5, на 55мм - 5,6.

Преимущества светосильных объективов:

  • светосильная оптика позволяет работать в условиях плохой освещенности без использования дополнительного оборудования и при низких ISO;
  • небольшое количество линз в конструкции объектива, что обеспечивает лучшее качество изображения;
  • мягкое и красивое боке на открытой диафрагме.

Самый светосильный объектив - Carl Zeiss 50mm f/0.7, выпущенный компанией NASA.

Наряду с телекамерой, объектив является важнейшей частью системы видеонаблюдения. От выбора объектива зависит угол зрения телекамеры, чувствительность и разрешение всей системы

Часто бывает, что в погоне за копеечной экономией потребитель устанавливает на высококлассную телекамеру объектив со скверными оптическими характеристиками, а в результате изображение теряет критически важные детали, которые, увы, невозможно впоследствии восстановить никакой цифровой обработкой сигнала.

Характеристики объективов

Классифицировать объективы можно по диаметру посадочного отверстия, по наличию и способу регулировки диафрагмы и (или) фокусного расстояния, по светосиле, разрешению, наличию асферических линз и по некоторым другим признакам.

Светосила

Светосилу объектива определяет его F-число, характеризующее яркость получаемого изображения. Оно равно отношению фокусного расстояния к максимальному диаметру апертуры (диафрагмы). Чем меньше значение F-числа, тем более светосильным является объектив. Обратная величина называется относительным отверстием. Понятно, что при сравнимом размере апертуры светосила и относительное отверстие длиннофокусных объективов всегда меньше (а F-число соответственно больше), чем у короткофокусных.

Разрешение

Разрешающая способность объектива характеризует его способность создавать раздельные изображения двух близко расположенных точек или линий измерительной миры, проецируемой или рассматриваемой через этот объектив. Поскольку предельное разрешение объектива ограничено дифракцией на нем, то с целью исключения субъективизма введен эмпирический критерий Рэлея для дифракционного разрешения. В нем достаточным для различимости двух максимумов считается минимум между ними с уровнем 0,8, то есть минимальный контраст изображения, при котором точки (или линии) считаются разрешаемыми, составляет 20%.

Разрешение объектива измеряется в линиях на миллиметр и определяется отношением максимально возможного количества белых полос, чередующихся с черными, которое данный объектив может спроецировать на рабочую зону ПЗС-матрицы с контрастом 20% к ширине этой зоны. Разрешение большинства объективов для охранного телевидения составляет от 50 до 150 линий/мм. Для мегапиксельных IP-камер выпускаются объективы с большим разрешением. Однако разрешение дешевых мини-объективов может быть и значительно меньше 50 линий/мм. При использовании оптики такого рода общее разрешение системы, скорее всего, будет ограничиваться именно объективом, что в большинстве случаев неприемлемо. Разрешение объектива неравномерно по полю. Максимальное и заявленное значение обеспечивается по центру апертуры. По краям для объективов хорошего качества разрешение снижается на 15-20%.

Типы крепления

По диаметру посадочного отверстия (установочной резьбы) объективы можно разделить на три большие группы: C/CS-mount, с установочной резьбой М12 и с другими размерами резьбы.

C-mount

Тип крепления C-mount был первым стандартом, который появился еще до эпохи ПЗС-камер. Характеризуется диаметром резьбы в 1 дюйм (25,4 мм), шагом - 1/32 дюйма (0,79375 мм) и расстоянием стопорной плоскости оправы объектива до плоскости изображения на ПЗС-матрице (рабочий отрезок или задний фокус) - в 0,69 дюйма (17,526 мм). С началом широкого использования в видеонаблюдении малоформатных ПЗС-матриц стало возможным существенно уменьшить апертуры объективов и габариты телекамер, в связи с чем был принят новый стандарт крепления CS (С Small, "малый" С). Он отличается от старого стандарта только уменьшенным расстоянием от объектива до ПЗС-матрицы. Теперь оно составляет ровно 12,5 мм. Таким образом, камера с объективом стала короче более чем на 5 мм. Учитывая, что резьба осталась точно такой же, можно устанавливать старые С-объективы на новые CS-камеры, используя переходное кольцо толщиной 5 мм (фото 1) и отодвигая, таким образом, объектив для правильной настройки заднего фокуса.

Использовать новый CS-объектив со старой С-камерой невозможно. Правда, сейчас совместимость стандартов не слишком важна - подавляющее большинство оптики и практически все полноразмерные телекамеры на рынке CCTV сделаны по CS-стандарту. Для обычной сферической CS-оптики типовыми значениями числа F являются 1.2, 1.4, 1.6. Высококачественные асферические объективы обычно имеют F, равное 0.8-1.0, а самые светосильные - вплоть до 0.5.

Фото 1. Переходное кольцо для установки С-объектива на CS-камеру

Резьба М12

Вторыми по распространенности являются объективы с крепежной резьбой М12 и с шагом 0,5 мм (реже 1 мм). Этот стандарт приобрел популярность одновременно с массовым появлением во второй половине 1990-х гг. миниатюрных бескорпусных камер, для которых размеры (в первую очередь диаметр) и цена CS-объективов уже казались слишком большими. Потом появились малогабаритные корпусные квадратные, цилиндрические и купольные камеры, и количество объективов М12, поставляемых обычно в комплекте с телекамерами, едва ли не превысило количество СS-объективов. Объективы Ml2 - это в основном очень простые (а значит, дешевые) объективы без каких-либо регулировок. Типовое значение F-числа стандартного ряда фокусных расстояний (2,45-16 мм) этих объективов - 2.0. Со временем ассортимент оптики с посадочным размером М12 расширился - выпускаются не только обычные board и pin-hole, но и более сложные объективы с автоматической диафрагмой и изменяемым фокусным расстоянием. Разумеется, светосила и разрешение таких объективов обычно хуже, чем у "полноразмерных" аналогов, поэтому там, где габариты не имеют большого значения, их лучше не использовать. Для объективов pin-hole характерны F-числа от 2.0 (у многолинзовых объективов) до 3.5-5.0 (у однолинзовых).

Резьба М7

С началом нового века тенденция миниатюризации продолжилась, некоторые ПЗС-камеры уменьшились до размеров 20x20 мм, кроме того, появились однокристальные CMOS-телекамеры с размерами вплоть до 8x8 мм. Разумеется, производители оптики сразу сделали для них подходящие объективы. Одним из новых стандартов стала резьба М7, и, весьма вероятно, через 3-5 лет очередной технологический прорыв потребует еще меньших размеров.

Типы регулировки диафрагмы

По способу регулировки диафрагмы объективы можно разделить на три группы: с фиксированной, с ручной и с автоматической диафрагмой.

Диафрагма - это отверстие (окно), регулирующее диаметр светового пучка, проходящего через объектив. Очевидно, чем больше диаметр такого отверстия, тем больше света попадет на ПЗС-матрицу телекамеры и тем при меньшей освещенности эта телекамера сможет нормально "показывать". Фиксированная диафрагма Самым простым объективом является объектив с фиксированной диафрагмой (см. фото 2). Иногда про него говорят - "без диафрагмы", что, конечно, неверно, поскольку диафрагма (апертура) есть у любого оптического прибора, но бывает такая конструкция, что отсутствует возможность ее изменения. У такого объектива обычно нет никаких регулировок, он не имеет движущихся составных частей, а значит, весьма дешев (от десятков центов у производителя до единиц долларов - в Москве за обычный объектив М12), надежен (при условии соблюдения производителем технологии) и предельно прост в установке и обслуживании. Если речь идет об оптике с установочной резьбой М12 и менее, то она в подавляющем большинстве случаев поставляется вместе с телекамерой и в настройке вообще не нуждается. В случае замены такого объектива надо просто добиться четкого изображения на мониторе, вворачивая и выворачивая его в держателе (holder) камеры.

Фото 2. Объективы с фиксированной диафрагмой

Ручная регулировка

Рассмотрим объективы с ручной регулировкой диафрагмы (см. фото 3). Механизм обычно состоит из нескольких лепестков, способных двигаться при вращении кольца диафрагмы на тубусе объектива.

При открытой диафрагме типовые значения F-числа 1.2,1.4,1.6. При противоположном крайнем положении регулировочного кольца у многих объективов апертура закрывается полностью, и изображение не формируется. Линзы объектива остаются при этом неподвижными. Это позволяет установить нужное значение диафрагмы при установке телекамеры непосредственно на объекте, а при необходимости изменять его в процессе эксплуатации без замены объектива и обычно даже без демонтажа камеры. Такие объективы, конечно, значительно удобнее тех, у которых диафрагма фиксированная, так как позволяют точно настроить объектив, добиваясь приемлемого компромисса между глубиной резкости (минимальная апертура) и чувствительностью телекамеры (максимальная апертура) непосредственно на месте установки камеры, при конкретных условиях. Разумеется, при изменении уровня освещенности такой объектив не может автоматически "сдвинуть или раздвинуть шторки", поэтому основное место применения оптики с ручной диафрагмой - помещения, причем с небольшой площадью окон и расположенные желательно не с южной стороны. С относительно небольшими перепадами освещенности в таких помещениях вполне может "справиться" электронный затвор, изменяя время экспозиции ПЗС-матрицы.

Фото 3. Объектив с ручной диафрагмой

Автоматическая диафрагма

Для наружного, уличного применения лучше всего подходят объективы с автоматической диафрагмой (фото 4). Лепестки диафрагмы перемещаются в таких объективах с помощью микропривода, управляемого электронной схемой, расположенной внутри объектива или камеры. По сути, механизм автодиафрагмы представляет собой отрицательную электронно-механическую обратную связь. При этом главная задача - "удержать" уровень видеосигнала телекамеры на номинальном уровне. Типовой заявленный диапазон изменения относительного отверстия, как правило, составляет от 1/1,2 или 1/1,4 (полностью открытая диафрагма) до 1/360 (полностью закрытая диафрагма). Это дает изменение освещенности на матрице более чем в 30 000 раз. Такой диапазон изменения диафрагмы не может быть обеспечен только за счет ее уменьшения в результате дифракционных и технологических ограничений. Для обеспечения требуемого диапазона на центральную часть объектива наносится поглощающее покрытие с переменной плотностью, увеличивающейся к центру апертуры (так называемый ND-фильтр).

Фото 4. Объектив с автоматической диафрагмой

Управление диафрагмой. VD- и DD-объективы

Если электронная "начинка" размещается в корпусе объектива, то с телекамеры на объектив подается напряжение питания и видеосигнал без синхросмеси. Когда уровень видеосигнала падает ниже номинального, формируется управляющее напряжение для открытия лепестков диафрагмы. Если видеосигнал увеличивается, диафрагма "закрывается".

Регулятор LEVEL позволяет менять открытие диафрагмы при номинальном уровне, то есть фактически устанавливает яркость изображения. Регулятор ALC на объективе позволяет изменить или установить среднее значение освещенности, при которой обеспечивается номинальный уровень видеосигнала. Такая схема работы автодиафрагмы является наиболее гибкой и эффективной, она получила название Video Drive (VD). Если электронная схема управления диафрагмы располагается внутри телекамеры, на объектив подается непосредственно ток, управляющий приводом. Этот тип объективов называется Direct Drive (DD), или DC (управляемый постоянным током). Очевидно, что принцип действия автодиафрагмы в обоих случаях одинаков.

Большинство современных телекамер имеют переключатель, дающий возможность управления как VD-, так и DD-объективами. Учитывая то, что стоимость объективов DD несколько ниже, для бюджетных решений часто используют именно их. Однако электронная схема управления диафрагмой в телекамере обычно несколько упрощена по сравнению со схемой в VD-объективе: например, часто отсутствует регулятор ALC. Такая регулировка позволяет установить полезный в некоторых случаях режим, когда диафрагма не будет "закрываться" при попадании в поле зрения ярких точечных объектов (фонарей, автомобильных фар, бликов), допуская потерю части информации вблизи них из-за блюминга ("заливания белым"), сохраняя достаточно различимыми темные зоны "картинки". У многих универсальных VD/DD-телекамер такого регулятора нет, поэтому в ответственных и сложных случаях для максимально точной настройки системы "камера-объектив" можно порекомендовать "умные" объективы с управлением диафрагмой видеосигналом (тип VD).

Многие объективы с автодиафрагмой имеют возможность дистанционного управления диафрагмой. Оператор управляет диафрагмой вручную с пульта и может оптимально настроить камеру для работы при разной освещенности. В настоящее время этот режим используется редко.

Автоматическая диафрагма, безусловно очень полезная на улице, не всегда обязательна, а иногда и вредна в помещении. Дело в том, что при регулировке диафрагмы у камеры изменяется глубина резкости, что в некоторых случаях может быть чревато потерей критически важной информации. Поэтому при стабильном и достаточно хорошем освещении лучше использовать оптику с ручной диафрагмой и режим электронного затвора на камере.

Фокусное расстояние

Важнейшей характеристикой объектива является фокусное расстояние. Наряду с форматом ПЗС-матрицы оно однозначно определяет угол зрения телекамеры, а также дает возможность его изменения.

Диапазон фокусных расстояний, применяемых в CCTV, очень велик - от 1,4 мм (объективы типа "рыбий глаз") до метров (у самых дорогих длиннофокусных трансфокаторов). Угол зрения может составлять от нескольких угловых минут до почти 180 градусов по горизонтали. Если "суперширокоугольная" оптика, пусть не самого высокого качества, распространена весьма широко (вспомним простейшие видеоглазки), то объективы с метровыми фокусными расстояниями настолько дороги и требуют такого могучего крепежа, что их использование крайне ограничено.

В простейшем случае фокусное расстояние объектива является постоянной величиной. В нем отсутствует механизм перемещения линз, что позволяет сделать объектив более дешевым при высоких оптических характеристиках. Долгое время именно такая оптика устанавливалась как на миниатюрные телекамеры, так и на камеры классической компоновки.

Варифокальные объективы

Сейчас ситуация изменилась - потребителю удобнее работать с варифокальными объективами, дающими возможность изменения фокусного расстояния и соответственно угла зрения. Это значительно упрощает жизнь инсталлятора, однако изготовление высококачественного "варифокала" - весьма сложная задача, и не каждый производитель справляется с нею. Ведь у такого объектива имеются подвижные линзы, что требует гораздо большей точности изготовления оптической системы, чем, например, при изготовлении механизма автодиафрагмы. Поэтому именно при покупке варифокальных объективов стоит перестраховаться и приобрести несколько более дорогую, но заведомо высококачественную "брендовую" оптику, не соблазняясь на супердешевые noname-объективы.

Кратность изменения фокусных расстояний у варифокальных объективов обычно составляет от 2 до 10.

Если на варифокальный объектив поставить привод для дистанционного управления, он автоматически превратится в трансфокатор - один из самых мощных инструментов CCTV (фото 5). Сейчас не редкость скоростные трансфокаторы, позволяющие быстро "увеличить" требуемый объект в 20-30 раз. В таких объективах обычно дистанционно изменяется фокусное расстояние (функция ZOOM), фокусировка (FOCUS) и диафрагма (IRIS). Использование камеры с трансфокатором без поворотного устройства в большинстве случаев неразумно -"наезд" всегда будет осуществляться в одну точку, поэтому большую популярность приобрели интегрированные комплекты Speeddome, включающие в себя телекамеру, объектив-трансфокатор, скоростную поворотную платформу и купольный корпус. Большая часть производимых сейчас трансфокаторов входит в состав таких изделий.

Фото 5. Объектив-трансфокатор

Типы линз

По типу используемых линз объективы делятся на сферические и асферические.

В первом случае объектив состоит из недорогих линз сферического типа, а во втором - используются линзы более сложной формы. К основным преимуществам асферической оптики относится большая светосила (число F обычно не превышает единицы), а также отсутствие так называемых "сферических аберраций" (искажений), что позволяет отказаться от линз, исправляющих эти искажения, и, как следствие, увеличить пропускание, уменьшить массу и габариты объектива.

Ночью при использовании инфракрасной подсветки происходит некоторая расфокусировка изображения вследствие изменения длины волны. Существуют объективы, свободные от этого недостатка. Они позволяют получать сфокусированное изображение без перенастройки системы при освещении сцены излучением с длиной волны вплоть до 950 нм. Вслед за телекамерами некоторые объективы обзавелись механически удаляемым светофильтром, который "отрезает" ИК-излучение при ярком свете и пропускает его в темноте.

Рынок CCTV

В особую группу следует отнести миниатюрные объективы pin-hole с выносом зрачка, предназначенные в основном для скрытой установки (фото 6). Такой объектив может "смотреть" через отверстие, меньшее, чем диаметр входной линзы (порядка 1 мм в диаметре). Дешевые однолинзовые объективы с малым входным зрачком, которыми комплектуется большинство миниатюрных телекамер, не имеют выноса зрачка вовсе и, строго говоря, не могут называться pin-hole.

Фото 6. Объективы pin-hole

Оптическое производство относится к числу наиболее сложных как с точки зрения разработки, так и технологии изготовления. Признанными лидерами в этой области издавна считаются три страны - Германия, Япония и Россия. Что касается объективов для CCTV, то пока отечественная промышленность ограничилась выпуском относительно небольших партий pin-hole и сборкой объективов на основе импортных комплектующих, в результате существенно более широкий рынок CS-объективов был занят главным образом японской продукцией.

В последнее десятилетие позиции японцев серьезно потеснили корейцы, а вслед за ними - китайцы. Качество работы последних, особенно относительно варифокальных объективов, часто оставляет желать лучшего. Небрежность при изготовлении печатных плат телекамер и при монтаже элементов обычно не влечет таких последствий, как неаккуратность при сборке оптики. Поэтому надо быть осмотрительным при покупке очень дешевых объективов, пусть и очень "похожих на настоящие". А уж если при легком встряхивании изнутри слышен грохот болтающихся линз, то от поставщика, предлагающего такую продукцию, надо бежать.

В заключение хочется выразить надежду, что на рынок CCTV обратят внимание ведущие российские оптико-механические предприятия и традиционно качественная российская оптика займет и в этой области достойное место, такое.

М. Арсентьев

Системы безопасности №1, 2008г.