Что такое назначение телескопа. Виды телескопов

Представьте человеческий глаз диаметром 5 см. При этом вытянутый от зрачка к сетчатке на полметра. Примерно так устроен телескоп. Он работает как большое глазное яблоко. Наш глаз по сути – большая линза. Сами по себе предметы он не видит, а улавливает отраженный от них свет (поэтому в полной темноте мы ничего не видим). Свет попадает через хрусталик на сетчатку, импульсы передаются в мозг, и мозг формирует картинку. У телескопа линза намного больше, чем наш хрусталик. Поэтому она собирает свет от удаленных предметов, которые глаз просто не улавливает.

Принцип действия у всех телескопов одинаковый, а вот строение бывает разное.

Первый вид телескопов – рефракторы

Самый простой вариант рефрактора представляет собой трубку, в оба конца которой вставлены двояковыпуклые – вот такие () – линзы. Они собирают свет от небесных объектов, преломляют и фокусируют – и в окуляре мы видим изображение.

Телескоп-рефрактор Levenhuk Strike 80 NG:

Второй вид телескопов – рефлекторы

Рефлекторы не преломляют, а отражают лучи. Простейший рефлектор – трубка с двумя зеркалами внутри. Одно зеркало, большое, расположено на противоположном объективу конце трубки, второе, поменьше – посередине. Лучи, попадая в трубку, отражаются от большого зеркала и попадают на маленькое зеркало, которое расположено под углом и направляет свет в линзу – окуляр, куда мы можем заглянуть и увидеть небесные объекты.

Телескоп Bresser Junior Reflector. Внешне рефрактор от рефлектора отличить просто: у рефрактора окуляр расположен с торца трубы, у рефлектора – сбоку.

Что лучше – рефрактор или рефлектор – предмет настоящей холивар между любителями астрономии. У каждого свои особенности. Рефракторы проще и более неприхотливые : не боятся пыли, меньше страдают при транспортировке, позволяют вести наземные наблюдения (т.к. в них изображение не перевернутое). Рефлекторы более нежные , но зато позволяют наблюдать за объектами дальнего космоса и заниматься астрофотографией. В целом рефракторы больше подойдут новичкам, а рефлекторы – продвинутым астрономам.

Так как рефракторы проще, рассмотрим работу телескопа на их примере. За образец возьмем телескопы серии Levenhuk Strike NG – они предназначены для начинающих астрономов и сделаны с минимумом сложностей.

Это линза, которая собирает свет. Она стеклянная. Именно поэтому телескопы–рефракторы не бывают очень большими: стекло тяжелое. Самый большой рефрактор находится в Йеркской обсерватории в США. Диаметр его объектива – 1,02 м.

Через линзу видно, что труба телескопа изнутри черного цвета, чтобы не было бликов от ярких объектов.

А это – бленда, которая защищает объектив от росы. Убережет и от небольших механических повреждений (толчков, ударов). Также бленда убирает блики от фонарей и других близко расположенных объектов.

Окуляр. Через него мы смотрим на небо.

Диагональное зеркало (с окуляром и линзой Барлоу) – нужно для того, чтобы изображение было прямым (неперевернутым). Тогда в телескоп можно наблюдать не только космические, но и земные объекты, как на следующей фотографии.

Этот снимок сделан через телескоп цифровым фотоаппаратом. Камера устанавливается на телескоп с помощью переходника.

Камеру можно установить не на все рефракторы. Например, у самых младших моделей Levenhuk Strike NG за 3 тыс. руб. такой возможности нет.

И, наконец, самое интересное. Снимки, которые можно сделать с помощью телескопа:

Этот снимок сделан через рефрактор Levenhuk Strike 80 NG осенью, в ясную погоду. Луна получилась хорошо, но планеты или галактики качественно сфотографировать с помощью рефрактора вряд ли получится. Это все-таки начальная модель, с которой предполагается совершать первые шаги в астрономии. Но зато ее можно возить с собой и использовать для наблюдения и съемки наземных объектов.

(Visited 1 times, 1 visits today)

Чтобы увеличить наблюдаемый астрономический объект, нужно собрать свет от этого объекта и сфокусировать его(т.е изображение объекта) в какой-либо точке.
Это может сделать либо объектив из линз, либо специальное зеркало.

Типы телескопов

*Рефракторы - свет собирает линзовый объектив. Он же и создаёт изображение предмета в точке, которое затем рассматривается в окуляр.
*Рефлекторы - свет собирает вогнутое зеркало, затем свет отражается маленьким плоским зеркалом к поверхности трубы телескопа, где можно наблюдать изображение.
*Зеркально-линзовые (катадиоптрические) - используются вместе и линзы, и зеркала.

Выбор телескопа

Во-первых, увеличение телескопа не главная его характеристика! Основная характеристика всех телескопов - апертура = диаметр объектива(или зеркала). Большая апертура позволяет телескопу собрать больше света, следовательно, наблюдаемое светило будет более четким, лучше будут видны подробности, большие увеличения можно будет применять.

Далее нужно узнать, какие магазины в вашем городе торгуют телескопами. Лучше покупать в магазинах, специализирующихся на продаже только телескопов и других оптических приборов. Иначе, внимательно проверяйте телескоп: линзы должны быть без царапин, в комплекте - все окуляры, инструкция по сборке и т.п. Можно заказать телескоп и через интернет-магазин(например, здесь). В этом случае, у вас будет больший выбор. Не забудьте узнать способы доставки телескопа и оплаты.

Плюсы и минусы основных видов телескопов:

Рефракторы: более долговечны, для них нужен меньший уход (т.к линзы находятся в закрытой трубе). Изображение, получаемое через рефрактор, более контрастное и насыщенное. 100% пропускает свет (при просветленном объективе). Температурные перепады мало влияют на качество изображения.
-Рефракторы: дороже, чем рефлекторы, наличие хроматической аберрации. (у апохроматических рефракторов она меньше выражена, чем у ахроматических рефракторов) Небольшая светосила.

Рефлекторы: дешевле рефракторов, отсутствие хроматической аберрации, небольшая длина трубы.
-Рефлекторы: необходимость юстировки (установка всех оптических поверхностей на свои расчетные места), меньший контраст изображения, открытая труба (=>загрязнение зеркала). Серебряное покрытие главного зеркала через несколько лет может ухудшиться. При выносе телескопа из теплого помещения на холодный воздух зеркало запотевает - требуется до 30 минут простоя. Рефлекторы пропускают на 30-40% меньше света, чем рефракторы с той же апертурой.

Зеркально-линзовые: компактные, отсутствие хроматизма и некоторых других искажений, которые есть в рефлекторах. Труба закрыта.
-Зеркально-линзовые: высокие светопотери на переотражения в зеркалах, достаточно тяжелые, высокая цена.

Первый критерий при выборе телескопа - апертура. Всегда действует правило: чем больше апертура, тем лучше . Правда, на телескоп с большей апертурой, больше влияет атмосфера. Бывает, светило видно лучше в телескоп с намного меньшей апертурой, чем с большей. Однако, за городом или когда атмосфера стабильная, телескоп с большей апертурой покажет намного больше.

Не забывайте про оптику: она должна быть обязательно стеклянной и с просветлением.

Важно знать, что 100 мм рефрактор примерно соответствует 120-130 мм рефлектору (опять же из-за не 100%-го пропускания света в рефлекторе).

->Про увеличение телескопа: максимальное полезное увеличение телескопа, при котором изображение будет более-менее четким примерно 2*D, где D-апертура в мм (например, для 60 мм рефрактора максимальное полезное увеличение: 2*60=120x). Но! все зависит опять же от оптики: на 60 мм рефракторе, при нормальной оптике и атмосфере, можно получить четкое изображение и до 200x, но не более!).

->Можно встретить телескопы с различными фокусными расстояниями объектива. Длиннофокусный телескоп обычно даёт лучшее изображение, чем короткофокусный(т.к короткофокусный телескоп сложнее изготовить, чтобы не было искажений). Однако длинный фокус объектива, значит, длинная труба телескопа - увеличение габаритов

->Еще одна характеристика телескопа - относительной отверстие - отношение диаметра объектива к фокусному расстоянию. Чем больше относительное отверстие (1/5 больше 1/12), тем изображение светил будет более ярким, с другой стороны - более заметны искажения.

Рефрактор с относительным отверстием 1:10 ~ соответствует рефлектору с относительным отверстием 1:8

->Выбирайте телескоп и по габаритам: если вы будете часто переносить телескоп(выезжать за город, например) - удобнее будет небольшой телескоп, не слишком длинный и не сишком тяжелый. Если же телескоп не будет вывозиться - можно взять и большего размера.

->Стоит обратить внимание на штатив и монтировку телескопа. При слабом штативе изображение будет шататься при каждом прикосновении к телескопу (чем больше увеличение выбрано - тем больше будет шататься)

Существует два типа монтировок: азимутальная и экваториальная:

Азимутальная монтировка позволяет наводить телескоп на объект по двум осям - горизонтальной и вертикальной.
Экваториальная - одна из осей вращения телескопа параллельна оси вращения Земли.

Плюсы и минусы различных видом монтировок

Азимутальной: очень простое устройство. Дешевле, чем экваториальная. Меньше весит, чем экваториальная.
-Азимутальной: изображение светила «убегает» из поля зрения (из-за вращения Земли вокруг своей оси) - необходимо перенаводить телескоп по двум осям (чем больше увеличение, тем чаще)=> будет сложнее фотографировать светила.

Экваториальной: когда светило «убегает» - движением одной ручки монтировки, вы его "догоните".
-Экваториальной: большой вес монтировки. Поначалу будет сложно освоить и настроить монтировку (подробнее про настройку)

Существуют экваториальные монтировки с электроприводом - вам не нужно будет перенаводить телескоп - техника будет делать это за вас

Если будете покупать в магазине - не поленитесь: тщательно осматривайте телескоп: на линзах и зеркалах не должны быть царапины, сколы и другие дефекты. В комплекте должны идти все окуляры, заявленные производителем (можно посмотреть в инструкции, что должно быть в комплекте).

Телескоп – это астрономический оптический прибор, предназначенный для наблюдения небесных тел.
Телескоп имеет окуляр, объектив или главное зеркало и специальную трубу, которая прикрепляется к монтировке, она же, в свою очередь, содержит оси, благодаря которым происходит наведение на объект наблюдения.

В 1609 году Галилео Галилеем был собран первый в истории человечества оптический телескоп. (Об этом читайте на нашем сайте: Кто создал первый телескоп?).
Современные телескопы бывают нескольких типов.

Рефлекторные (зеркальные) телескопы

Если дать им самую упрощенную характеристику, то это такие устройства, которые имеют специальное вогнутое зеркало, выполняющее собирание света и его фокусирование. К достоинствам таких телескопов можно отнести простоту изготовления, хорошее качество оптики. Основным недостатком является немного бОльшая забота и обслуживание, чем у других видов телескопов.
Ну, а теперь более подробно о рефлекторных телескопах.
Рефлектор – телескоп с зеркальным объективом, который образует изображение путем отражения света от зеркальной поверхности. Рефлекторы используются в основном для фотографирования неба, фотоэлектрических и спектральных исследований, а для визуальных наблюдений они используются реже.
Рефлекторы имею некоторые преимущества перед рефракторами (телескопами с линзовым объективом), т.к. в них отсутствует хроматическая аберрация (окрашенность изображений); главное зеркало легче сделать бОльших размеров, чем линзовый объектив. Если зеркало имеет не сферическую, а параболическую форму, то можно свести к нулю сферическую аберрацию (размытость краев или середины изображения). Изготовление зеркал легче и дешевле, чем линзовых объективов, что дает возможность увеличить диаметр объектива, а значит, разрешающую способность телескопа. Из готового комплекта зеркал любители-астрономы могут создать самодельный «ньютоновский» рефлектор. Достоинство, благодаря которому система получила распространение среди любителей, - простота изготовления зеркал (главное зеркало в случае малых относительных отверстий - сфера; плоское зеркало может быть небольших размеров).

Рефлектор системы Ньютона

Был изобретен в 1662 году. Его телескоп был первым зеркальным телескопом. В рефлекторах большое зеркало называют главным зеркалом. В плоскости главного зеркала могут быть помещены фотопластинки для фотографирования небесных объектов.
В системе Ньютона объектив представляет собой вогнутое параболическое зеркало, от которого отраженные лучи небольшим плоским зеркалом направляются в окуляр, находящийся сбоку от трубы.
Картинка: Отражение сигналов, приходящих с различных направлений.

Рефлектор системы Грегори

Лучи от главного вогнутого параболического зеркала направляются на небольшое вогнутое эллиптическое зеркало, которое отражает их в окуляр, помещенный в центральном отверстии главного зеркала. Поскольку эллиптическое зеркало расположено за фокусом главного зеркала, изображение получается прямое, тогда как в системе Ньютона – перевернутое. Наличие второго зеркала увеличивает фокусное расстояние и тем самым дает возможность большого увеличения.

Рефлектор системы Кассегрена

Здесь вторичное зеркало – гиперболическое. Оно установлено перед фокусом главного зеркала и позволяет сделать трубу рефлектора более короткой. Главное зеркало – параболическое, здесь нет сферической аберрации, но есть кома (изображение точки принимает вид несимметричного пятна рассеяния) – это ограничивает поле зрения рефлектора.

Рефлектор системы Ломоносова – Гершеля

Здесь, в отличие от рефлектора Ньютона, главное зеркало наклонено таким образом, что изображение фокусируется вблизи входного отверстия телескопа, где и помещается окуляр. Эта система дала возможность исключить промежуточные зеркала и и потери света в них.

Рефлектор системы Ричи-Кретьена

Эта система представляет собой улучшенный вариант системы Кассегрена. Главное зеркало – вогнутое гиперболическое, а вспомогательное – выпуклое гиперболическое. Окуляр установлен в центральном отверстии гиперболического зеркала.
В последнее время эта система получила широкое применение.
Существую и другие рефлекторные системы: Шварцшильда, Максутова и Шмидта (зеркально-линзовые системы), Мерсена, Нессмита.

Недостаток рефлекторов

Их трубы открыты потокам воздуха, которые портят поверхность зеркал. От колебаний температуры и механических нагрузок форма зеркал слегка меняется, а из-за этого ухудшается видимость.
Один из крупнейших рефлекторов находится в Маунт-Паломарской астрономической обсерватории США. Его зеркало имеет диаметр 5 м. Крупнейший в мире астрономический рефлектор (6 м) находится в Специальной астрофизической обсерватории на Северном Кавказе.

Телескоп-рефрактор (линзовый телескоп)

Рефракторы – это телескопы, имеющие линзовый объектив, который образует изображение объектов посредством преломления лучей света.
Это известная всем классическая длинная труба в виде подзорной с большой линзой (объективом) в одном конце и окуляром в другом. Рефракторы используются для визуальных, фотографических, спектральных и других наблюдений.
Рефракторы обычно построены по системе Кеплера. Угловое зрение этих телескопом мало, не превосходит 2º. Объектив, как правило, двухлинзовый.
Линзы в объективах небольших рефракторов обычно склеивают для уменьшения бликов и потерь света. Поверхности линз подвергают специальной обработке (просветление оптики), в результате этого на стекле образуется тонкая прозрачная пленка, которая значительно уменьшает потери света вследствие отражения.
Крупнейший в мире рефрактор Йерксской астрономической обсерватории в США имеет объектив диаметром 1,02 м. На Пулковской обсерватории установлен рефрактор с диаметром объектива 0,65 м.

Зеркально-линзовые телескопы

Зеркально-линзовый телескоп предназначен для фотографирования больших областей неба. Его изобрел в 1929 немецкий оптик Б. Шмидт . Главными деталями здесь являются сферическое зеркало и Шмидта коррекционная пластинка, установленная в центре кривизны зеркала. Благодаря такому положению коррекционной пластинки все пучки лучей, проходящие через неё от разных участков неба, оказываются равноправными по отношению к зеркалу, вследствие чего телескоп свободен от аберраций оптических систем. Сферическая аберрация зеркала исправляется коррекционной пластинкой, центральная часть которой действует как слабая положительная линза, а внешняя - как слабая отрицательная линза. Фокальная поверхность, на которой образуется изображение участка неба, имеет форму сферы, радиус кривизны которой равен фокусному расстоянию. Фокальная поверхность может быть преобразована в плоскую с помощью Пиацци - Смита линзы.

Недостатком зеркально-линзовых телескопов является значительная длина трубы, вдвое превышающая фокусное расстояние телескопа. Для устранения этого недостатка предложен ряд модификаций, в том числе применение второго (дополнительного) выпуклого зеркала, приближение коррекционной пластинки к главному зеркалу и др.
Крупнейшие телескопы Шмидта установлены на Таутенбургской астрономической обсерватории в ГДР (D= 1,37м, А = 1:3), Маунт-Паломарской астрономической обсерватории в США (D = 1,22 м, А = 1:2,5) и на Бюраканской астрофизической обсерватории АН Армянской ССР (D = 1,00 м, А = 1:2, 1:3).

Радиотелескопы

Они используются для исследования космических объектов в радиодиапазоне. Основными элементами радиотелескопов являются принимающая антенна и радиометр - чувствительный радиоприемник и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона.
При объединении в единую сеть нескольких одиночных телескопов, расположенных в разных частях земного шара, говорят о радиоинтерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети.
Российский орбитальный радиотелескоп Радиоастрон планируется использовать в качестве одного из элементов гигантского интерферометра.

Космические телескопы (астрономические спутники)

Они сконструированы для проведения астрономических наблюдений из космоса. Потребность в таком виде обсерваторий возникла из-за того, что земная атмосфера задерживает гамма-, рентгеновское и ультрафиолетовое излучение космических объектов, а также большую часть инфракрасного.
Космические телескопы оборудуют устройствами для сбора и фокусировки излучения, а также системами преобразования и передачи данных, системой ориентации, иногда двигательными системами.

Рентгеновские телескопы

Предназначены для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на искусственных спутниках Земли.

На рисунке: Рентгеновский Телескоп - Позиционно чувствительный (АРТ-П). Был создан в отделе астрофизики высоких энергий Института космических исследований АН СССР (Москва).

Выпуск 31

В своём очередном видеоуроке астрономии профессор расскажет о строении телескоп,а также о том, какое строение имеет планета Нептун.

Строение телескопа

Телескоп — прибор, предназначенный для наблюдения небесных тел. У всех на свете телескопов одинаковый принцип строения и работы. Они собирают слабый свет, идущий от далёких звёзд, и концентрирует его в глазу наблюдателя. Любой оптический телескоп по принципу его строения состоит из трубы, треноги или фундамента, на который устанавливается труба, монтировки с осями наведения на объект и, конечно же, непосредственно оптики — окуляра и объектива. В зависимости от оптической схемы все телескопы можно разделить на три больших группы: зеркальные, линзовые и зеркально-линзовые телескопы. В строении зеркальных телескопов используются зеркала в качестве светособирающего элемента. У линзовых телескопов в качестве светособирающих элементов используются линзы. И, наконец, у зеркально-линзовых телескопов — зеркала и линзы.

Строение Нептуна

Нептун — восьмая и самая дальняя планета Солнечной системы. Нептун также является четвёртой по диаметру и третьей по массе планетой. Масса Нептуна в 17,2 раза, а диаметр экватора в 3,9 раза больше таковых у Земли. Планета была названа в честь римского бога морей. Синим цветом планета обязана метану, который находится в верхних слоях атмосферы Нептуна. Кроме метана в строении атмосферы Нептуна обнаружены водород и гелий. Высокую пропорцию состава и строения атмосферы планеты образуют льды: водного, аммиачного, метанового. Ядро Нептуна, как и Урана, состоит главным образом изо льдов и горных пород. В атмосфере Нептуна бушуют самые сильные ветры среди планет Солнечной системы, по некоторым оценкам, их скорости могут достигать 2100 км/ч. У Нептуна есть кольцевая система, хотя гораздо менее существенная, чем, к примеру, у Сатурна. Кольца Нептуна имеют определённое строение — это ледяные частицы, покрытые силикатами, или основанным на углероде материалом, — наиболее вероятно, это он придаёт им красноватый оттенок.

Строение телескопа

В XX веке астрономия сделала множество шагов в изучении нашей Вселенной, но эти шаги были бы невозможны без использования таких сложных приборов, как телескопы, история которых насчитывает не одну сотню лет. Эволюция телескопа происходила в несколько этапов, и именно о них я постараюсь рассказать.

С давних времен человечество тянуло узнать, что же находится там, на небе, за пределами Земли и невидимого человеческому глазу. Величайшие ученые древности, такие как Леонардо да Винчи, Галилео Галилей, предпринимали попытки создать прибор, позволяющий заглянуть в глубины космоса и приоткрыть завесу тайны Вселенной. С тех пор произошло множество открытий в области астрономии и астрофизики. Каждый человек знает, что такое телескоп, но не все знают, как давно и кем был изобретен первый телескоп, и как он был устроен.

Телескоп – прибор, предназначенный для наблюдения небесных тел.

В частности, под телескопом понимается оптическая телескопическая система, применяемая не обязательно для астрономических целей.

Существуют телескопы для всех диапазонов электромагнитного спектра:

    оптические телескопы

    радиотелескопы

    рентгеновские телескопы

    гамма-телескопы

Оптические телескопы

Телескоп представляет собой трубу (сплошную, каркасную или ферму), установленную на монтировке, снабжённой осями для наведения на объект наблюдения и слежения за ним. Визуальный телескоп имеет объектив и окуляр. Задняя фокальная плоскость объектива совмещена с передней фокальной плоскостью окуляра. В фокальную плоскость объектива вместо окуляра может помещаться фотоплёнка или матричный приёмник излучения. В таком случае объектив телескопа, с точки зрения оптики, является фотообъективом. Телескоп фокусируется при помощи фокусера (фокусированного устройства). телескоп космос астрономия

По своей оптической схеме большинство телескопов делятся на:

    Линзовые (рефракторы или диоптрические) – в качестве объектива используется линза или система линз.

    Зеркальные (рефлекторы или катоптрические) – в качестве объектива используется вогнутое зеркало.

    Зеркально-линзовые телескопы (катадиоптрические) – в качестве объектива используется сферическое зеркало, а линза, система линз или мениск служит для компенсации аберраций.

Радиотелескопы

Для исследования космических объектов в радиодиапазоне применяют радиотелескопы. Основными элементами радиотелескопов являются принимающая антенна и радиометр – чувствительный радиоприемник, перестраиваемый по частоте, и принимающая аппаратура. Поскольку радиодиапазон гораздо шире оптического, для регистрации радиоизлучения используют различные конструкции радиотелескопов, в зависимости от диапазона. В длинноволновой области (метровый диапазон; десятки и сотни мегагерц) используют телескопы, составленные из большого числа (десятков, сотен или, даже, тысяч) элементарных приемников, обычно диполей. Для более коротких волн (дециметровый и сантиметровый диапазон; десятки гигагерц) используют полу- или полноповоротные параболические антенны. Кроме того, для увеличения разрешающей способности телескопов, их объединяют в интерферометры. При объединении нескольких одиночных телескопов, расположенных в разных частях земного шара, в единую сеть, говорят о радио интерферометрии со сверхдлинной базой (РСДБ). Примером такой сети может служить американская система VLBA (англ. Very Long Baseline Array). С 1997 по 2003 год функционировал японский орбитальный радиотелескоп HALCA (англ. Highly Advanced Laboratory for Communications and Astronomy), включенный в сеть телескопов VLBA, что позволило существенно улучшить разрешающую способность всей сети. Российский орбитальный радиотелескоп Радиоастрон также планируется использовать в качестве одного из элементов гигантского интерферометра.

Рентгеновский телескоп

Рентгеновский телескоп- телескоп, предназначенный для наблюдения удаленных объектов в рентгеновском спектре. Для работы таких телескопов обычно требуется поднять их над атмосферой Земли, непрозрачной для рентгеновских лучей. Поэтому телескопы размещают на высотных ракетах или на ИСЗ.

Оптическая схема

Из-за большой энергии рентгеновские кванты практически не преломляются в веществе (следовательно, тяжело изготовить линзы) и не отражаются при любых углах падения, кроме самых пологих (около 90 градусов).

Рентгеновские телескопы могут использовать несколько методов для фокусирования лучей. Наиболее часто используются телескопы Вольтера (с зеркалами скользящего падения), кодирование апертуры и модуляционные (качающиеся) коллиматоры.

Ограниченные возможности рентгеновской оптики приводят к более узкому полю зрения по сравнению с телескопами, работающими в диапазонах УФ и видимого света.

Часто изобретение первого телескопа приписывают Гансу Липпершлею из Голландии, 1570-1619 годы, однако почти наверняка он не являлся первооткрывателем. Скорее всего, его заслуга в том, что он первый сделал новый прибор телескоп популярным и востребованным. А также именно он подал в 1608 году заявку на патент на пару линз, размещенный в трубке. Он назвал устройство подзорной трубой. Однако его патент был отклонен, поскольку его устройство показалось слишком простым.

Задолго до него Томас Диггес, астроном, в 1450 году попытался увеличить звезды с помощью выпуклой линзы и вогнутого зеркала. Однако у него не хватило терпения доработать устройство, и полу-изобретение вскоре было благополучно забыто. Сегодня Диггеса помнят за описание гелиоцентрической системы.

К концу 1609 года небольшие подзорные трубы, благодаря Липпершлею, стали распространены по всей Франции и Италии. В августе 1609 года Томас Харриот доработал и усовершенствовал изобретение, что позволило астрономам рассмотреть кратеры и горы на Луне.

Большой прорыв произошел, когда итальянский математик Галилео Галилей узнал о попытке голландца запатентовать линзовую трубу. Вдохновленный открытием, Галлей решил сделать такой прибор для себя. В августе 1609 года именно Галилео изготовил первый в мире полноценный телескоп. Сначала, это была всего лишь зрительная труба – комбинация очковых линз, сегодня бы ее назвали рефрактор. До Галилео, скорее всего, мало кто догадался использовать на пользу астрономии эту развлекательную трубку. Благодаря прибору, сам Галилей открыл горы и кратеры на Луне, доказал сферичность Луны, открыл четыре спутника Юпитера, кольца Сатурна и сделал множество других полезных открытий.

Сегодняшнему человеку телескоп Галилео не покажется особенным, любой десятилетний ребенок может легко собрать гораздо лучший прибор с использованием современных линз. Но телескоп Галилео был единственным реальным работоспособным телескопом на тот день с 20-кртным увеличением, но с маленьким полем зрения, немного размытым изображением и другими недостатками. Именно Галилео открыл век рефрактора в астрономии – 17 век.

Время и развитие науки позволяло создавать более мощные телескопы, которые давали видеть много больше. Астрономы начали использовать объективы с большим фокусным расстоянием. Сами телескопы превратились в большие неподъемные трубы по размеру и, конечно, были не удобны в использовании. Тогда для них изобрели штативы. Телескопы постепенно улучшали, дорабатывали. Однако его максимальный диаметр не превышал нескольких сантиметров – не удавалось изготавливать линзы большого размера.

К 1656 году Христиан Гюйенс сделал телескоп, увеличивающий в 100 раз наблюдаемые объекты, размер его был более 7 метров, апертура около 150 мм. Этот телескоп уже относят к уровню сегодняшних любительских телескопов для начинающих. К 1670-х годам был построен уже 45-метровый телескоп, который еще больше увеличивал объекты и давал больший угол зрения.

Но даже обычный ветер мог служить препятствием для получения четкого и качественного изображения. Телескоп стал расти в длину. Первооткрыватели, пытаясь выжать максимум из этого прибора, опирались на открытый ими оптический закон – уменьшение хроматической аберрации линзы происходит с увеличением ее фокусного расстояния. Чтобы убрать хроматические помехи, исследователи делали телескопы самой невероятной длины. Эти трубы, которые назвали тогда телескопами, достигали 70 метров в длину и доставляли множество неудобств в работе с ними и настройке их. Недостатки рефракторов заставили великие умы искать решения к улучшению телескопов. Ответ и новый способ был найден: собирание и фокусировке лучей стала производится с помощью вогнутого зеркала. Рефрактор переродился в рефлектор, полностью освободившийся от хроматизма.

Заслуга эта целиком и полностью принадлежит Исааку Ньютону, именно он сумел дать новую жизнь телескопам с помощью зеркала. Его первый рефлектор имел диаметр всего четыре сантиметра. А первое зеркало для телескопа диаметром 30 мм он сделал из сплава меди, олова и мышьяка в 1704 году. Изображение стало четким. Кстати, его первый телескоп до сих пор бережно хранится в астрономическом музее Лондона.

Но еще долгое время оптикам никак не удавалось делать полноценные зеркала для рефлекторов. Годом рождения нового типа телескопа принято считать 1720 год, когда англичане построили первый функциональный рефлектор диаметром в 15 сантиметров. Это был прорыв. В Европе появился спрос на удобоносимые, почти компактные телескопы в два метра длиной. О 40-метровых трубах рефракторов стали забывать.

Двухзеркальная система в телескопе предложена французом Кассегреном. Реализовать свою идею в полной мере Кассегрен не смог из-за отсутствия технической возможности изобретения нужных зеркал, но сегодня его чертежи реализованы. Именно телескопы Ньютона и Кассегрена считаются первыми "современными" телескопами, изобретенными в конце 19 века. Кстати, космический телескоп Хаббл работает как раз по принципу телескопа Кассегрена. А фундаментальный принцип Ньютона с применением одного вогнутого зеркала использовался в Специальной астрофизической обсерватории в России с 1974 года. Расцвет рефракторной астрономии произошел в 19 веке, тогда диаметр ахроматических объективов постепенно рос. Если в 1824 году диаметр был еще 24 сантиметра, то в 1866 году его размер вырос вдвое, в 1885 году диаметр стал составлять 76 сантиметров (Пулковская обсерватория в России), в к 1897 году изобретен иеркский рефрактор. Можно посчитать, что за 75 лет линзовый объектив увеличивался со скоростью одного сантиметра в год.

К концу 18 века компактные удобные телескопы пришли на замену громоздким рефлекторам. Металлические зеркала тоже оказались не слишком практичны – дорогие в производстве, а также тускнеющие от времени. К 1758 году с изобретением двух новых сортов стекла: легкого – крон и тяжелого – флинта, появилась возможность создания двухлинзовых объективов. Чем благополучно и воспользовался ученый Дж. Доллонд, который изготовил двухлинзовый объектив, впоследствии названный доллондовым.

После изобретения ахроматических объективов победа рефрактора была абсолютная, оставалось лишь улучшать линзовые телескопы. О вогнутых зеркалах забыли. Возродить их к жизни удалось руками астрономов-любителей. Вильям Гершель, английский музыкант, в 1781 году открывший планету Уран. Его открытию не было равным в астрономии с глубокой древности. Причем Уран был открыт с помощью небольшого самодельного рефлектора. Успех побудил Гершеля начать изготовление рефлекторов большего размера. Гершель собственноручно в мастерской сплавлял зеркала из меди и олова. Главный труд его жизни – большой телескоп с зеркалом диаметром 122 см. Это диаметр его самого большого телескопа. Открытия не заставили себя ждать, благодаря этому телескопу, Гершель открыл шестой и седьмой спутники планеты Сатурн. Другой, ставший не менее известным, астроном-любитель английский землевладелец лорд Росс изобрел рефлектор с зеркалом с диаметром в 182 сантиметра. Благодаря телескопу, он открыл ряд неизвестных спиральных туманностей. Телескопы Гершеля и Росса обладали множеством недостатков. Объективы из зеркального металла оказались слишком тяжелыми, отражали лишь малую часть падающего на них света и тускнели. Требовался новый совершенный материал для зеркал. Этим материалом оказалось стекло. Французский физик Леон Фуко в 1856 году попробовал вставить в рефлектор зеркалом из посеребренного стекла. И опыт удался. Уже в 90-х годах астроном-любитель из Англии построил рефлектор для фотографических наблюдений со стеклянным зеркалом в 152 сантиметра в диаметре. Очередной прорыв в телескопостроении был очевиден.

Этот прорыв не обошелся без участия русских ученых. Я.В. Брюс прославился разработкой специальных металлических зеркал для телескопов. Ломоносов и Гершель, независимо друг от друга, изобрели совершенно новую конструкцию телескопа, в которой главное зеркало наклоняется без вторичного, тем самым уменьшая потери света.

Немецкий оптик Фраунгофер поставил на конвейер производство и качество линз. И сегодня в Тартуской обсерватории стоит телескоп с целой, работающей линзой Фраунгофера. Но рефракторы немецкого оптика также были не без изъяна – хроматизма.

И лишь к концу 19 века изобрели новый метод производства линз. Стеклянные поверхности начали обрабатывать серебряной пленкой, которую наносили на стеклянное зеркало путем воздействия виноградного сахара на соли азотнокислого серебра. Эти принципиально новые линзы отражали до 95% света, в отличие от старинных бронзовых линз, отражавших всего 60% света. Л. Фуко создал рефлекторы с параболическими зеркалами, меняя форму поверхности зеркал. В конце 19 века Кросслей, астроном-любитель, обратил свое внимание на алюминиевые зеркала. Купленное им вогнутое стеклянное параболическое зеркало диаметром 91 см сразу было вставлено в телескоп. Сегодня телескопы с подобными громадными зеркалами устанавливаются в современных обсерваториях. В то время как рост рефрактора замедлился, разработка зеркального телескопа набирала обороты. С 1908 по 1935 года различные обсерватории мира соорудили более полутора десятков рефлекторов с объективом, превышающим иеркский. Самый большой телескоп установлен в обсерватории Моунт-Внльсон, его диаметр 256 сантиметров. И даже этот предел соврем скоро превзойден вдвое. В Калифорнии смонтирован американский рефлектор-гигант, на сегодня его возраст более пятнадцати лет.

Более 30 лет назад в 1976 году ученые СССР построили 6-метровый телескоп БТА – Большой Телескоп Азимутальный. До конца 20 века БРА считался крупнейшим в мире телескопом Изобретатели БТА были новаторами в оригинальных технических решениях, таких как альт-азимутальная установка с компьютерным ведением. Сегодня это новшества применяются практически во всех телескопах-гигантах. В начале 21 века БТА оттеснили во второй десяток крупных телескопов мира. А постепенная деградация зеркала от времени – на сегодня его качество упало на 30% от первоначального – превращает его лишь в исторический памятник науке.

К новому поколению телескопов относятся два больших телескопа 10-метровых близнеца KECK I и KECK II для оптических инфракрасных наблюдений. Они были установлены в 1994 и 1996 году в США. Их собрали благодаря помощи фонда У. Кека, в честь которого они и названы. Он предоставил более 140 000 долларов на их строительство. Эти телескопы размером с восьмиэтажный дом и весом более 300 тонн каждый, но работают они с высочайшей точностью. Принцип работы – главное зеркало диаметром 10 метров, состоящее из 36 шестиугольных сегментов, работающих как одно отражательное зеркало. Установлены эти телескопы в одном из оптимальных на Земле мест для астрономических наблюдений – на Гаваях, на склоне потухшего вулкана Мануа Кеа высотой 4 200 м. К 2002 году эти два телескопа, расположенных на расстоянии 85 м друг от друга, начали работать в режиме интерферометра, давая такое же угловое разрешение, как 85-метровый телескоп. История телескопа прошла долгий путь – от итальянских стекольщиков до современных гигантских телескопов-спутников. Современные крупные обсерватории давно компьютеризированы. Однако любительские телескопы и многие аппараты, типа Хаббл, все еще базируются на принципах работы, изобретенных Галилеем.

Применение

Современные телескопы позволяют астрономам "заглянуть" далеко за пределы нашей Вселенной. Для точного наведения приборов на объект используются сложные программные алгоритмы, которые неожиданно очень пригодились и онкологам.

При наблюдении за далекими галактиками и во время поисков новых небесных тел ученым приходится рассчитывать сложные траектории космических объектов с тем, чтобы в определенный момент времени телескоп "смотрел" именно на тот участок неба, где далекая планета, комета или астероид будут видны наиболее отчетливо.

Подобные расчеты производятся с помощью сложнейших, специально написанных программ для компьютеров, управляющих телескопами.

А британские ученые, занимающиеся проблемами онкологии, в частности изучением рака молочной железы, более чем успешно использовали "астрономические" компьютерные программы для анализа образцов раковых опухолей груди.

Сотрудники Кембриджского университета (University of Cambridge) изучали 2 000 образцов раковых опухолей для совершенствования методики, так называемой персонализации лечения рака. Такая методика предполагает точное знание максимального числа индивидуальных особенностей опухоли у того или иного пациента для выбора наиболее эффективных химиотерапевтических препаратов.

С помощью обычных методов ученым пришлось бы затратить на анализ 2 000 образцов не менее недели – но использование "астрономических" программ позволило выполнить эту работу менее чем за 1 сутки.

Для внесения коррективов в программу и ее максимальную адаптацию для нужд онкологии кембриджские ученые планируют в ближайшее время провести анализ 20 000 образцов опухолей груди, полученных у пациенток из разных стран Европы.